Abstract

We study the near-field probing of the slow Bloch laser mode of a photonic crystal by a bowtie nano-aperture (BNA) positioned at the end of a metal-coated fiber probe. We show that the BNA acts as a polarizing nanoprobe allowing us to extract information about the polarization of the near-field of the slow-light mode, without causing any significant perturbation of the lasing process. Near-field experiments reveal a spatial resolution better than λ/20 and a polarization ratio as strong as 110. We also demonstrate that the collection efficiency is two orders of magnitude larger for the BNA than for a 200 nm large circular aperture opened at the apex of the same metal-coated fiber tip. The BNA allows for overcoming one of the main limitations of SNOM linked to the well-known trade off between resolution and signal-to-noise ratio.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light2nd ed. (Princeton University Press, 2008).
  2. S. Bozhevolnyi, V. Volkov, T. Søndergaard, A. Boltasseva, P. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
    [CrossRef]
  3. R. Wuest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
    [CrossRef]
  4. P. Kramper, M. Kafesaki, C. Soukoulis, A. Birner, F. Müller, U. Gösele, R. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).
    [CrossRef] [PubMed]
  5. N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
    [CrossRef] [PubMed]
  6. M.-P. Bernal, M. Roussey, and F. Baida, “Near- and far-field verification of electro-optic effect enhancement on a tunable lithium niobate photonic crystal,” J. Microscopy 229, 264–269 (2008).
    [CrossRef]
  7. N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
    [CrossRef] [PubMed]
  8. T.-P. Vo, A. Rahmani, A. Belarouci, C. Seassal, D. Nedeljkovic, and S. Callard, “Near-field and far-field analysis of an azimuthally polarized slow bloch mode microlaser,” Opt. Express 18, 26879–26886 (2010).
    [CrossRef]
  9. C. Girard and E. Dujardin, “Near-field Optical properties of top-down and bottom-up nanostructures”, J. Opt. A. 8, S73–S86, (2006).
    [CrossRef]
  10. H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy”, Phys. Rev. B 74, 205111 (2006).
    [CrossRef]
  11. M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
    [CrossRef] [PubMed]
  12. S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
    [CrossRef]
  13. L. Novotny and B. Hecht, Principle of Nano-Optics (Cambridge University Press, 2006).
  14. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  15. C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys. 17, 35 (1954).
    [CrossRef]
  16. Y.R. Samii and R. Mittra, IEEE Trans. Antennas and Propagation 25, 180–187 (1977).
    [CrossRef]
  17. E. Bortchagovsky, G. Colas des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B. 84, 49–53 (2006).
    [CrossRef]
  18. U. Schroter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001).
    [CrossRef]
  19. E. Devaux, A. Dereux, E. Bourillot, J. Weeber, Y. Lacroute, J. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
    [CrossRef]
  20. J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–237 (1997).
    [CrossRef]
  21. D. Vanlabeke and D. Barchiesi, “Probes for scanning tunneling optical microscopy - a theoretical comparison,” J. Opt. Soc. Am. 10, 2193–2201 (1993).
    [CrossRef]
  22. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
    [CrossRef]
  23. P. Viktorovitch, B. Ben Bakir, S. Boutami, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev. 4, 401–413 (2010).
    [CrossRef]
  24. F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, “Tuning a two-dimensional photonic crystal resonance via optical carrier injection,” Opt. Lett. 30, 64–66 (2005).
    [CrossRef] [PubMed]
  25. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [CrossRef]
  26. R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
    [CrossRef]
  27. P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  28. L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14, 9902–9908 (2006).
    [CrossRef] [PubMed]
  29. I. A. Ibrahim, M. Mivelle, T. Grosjean, J. T. Allegre, G. W. Burr, and F. I. Baida, “Bowtie-shaped nanoaperture: a modal study,” Opt. Lett. 35, 2448–2450 (2010).
    [CrossRef] [PubMed]
  30. M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, and T. Grosjean, “Bowtie nano-aperture as interfacebetween near-fields and a single-modefiber,” Opt. Express 18, 15964–15974 (2010).
    [CrossRef] [PubMed]
  31. S.-H. Kwon and Y.-H. Lee, “High index-contrast 2d photonic band edge laser,” IEICE. Trans. Electron. E.87, 308–315 (2004).
  32. K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
    [CrossRef]
  33. E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
    [CrossRef] [PubMed]
  34. L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
    [CrossRef]
  35. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40, 5860–5871 (2001).
    [CrossRef]
  36. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House: Boston, 2005).
  37. L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
    [CrossRef] [PubMed]
  38. T. Grosjean, I. A. Ibrahim, M. A. Suarez, G. W. Burr, M. Mivelle, and D. Charraut, “Full vectorial imaging of electromagnetic light at subwavelength scale,” Opt. Express 18, 5809–5824 (2010).
    [CrossRef] [PubMed]
  39. C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. d’Yerville, D. Cassagne, J. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
    [CrossRef]
  40. G. Le Gac, A. Rahmani, C. Seassal, E. Picard, E. Hadji, and S. Callard, “Tuning of an active photonic crystal cavity by an hybrid silica/silicon near-field probe,” Opt. Express 17, 21672–21679 (2009).
    [CrossRef] [PubMed]
  41. S. I. Bozhevolnyi and E. A. Bozhevolnaya, “Near-field imaging of the interference pattern of counterpropagating evanescent waves,” Opt. Lett. 24, 747–749 (1999).
    [CrossRef]
  42. S. I. Bozhevolnyi and B. Vohnsen, “Near-field imaging of optical phase and its singularities”, Opt. Commun. 212217–23 (2002).
    [CrossRef]
  43. L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N.F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 365–360 (2011).
    [CrossRef]
  44. A. Belarouci, T. Benyattou, X. Letartre, and P. Viktorovitch, “3D light harnessing based on coupling engineering between 1D-2D Photonic Crystal membranes and metallic nano-antenna,” Opt. Express 18, A381–A394 (2010).
    [CrossRef] [PubMed]
  45. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010)
    [CrossRef] [PubMed]

2011 (1)

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N.F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 365–360 (2011).
[CrossRef]

2010 (8)

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010)
[CrossRef] [PubMed]

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[CrossRef]

P. Viktorovitch, B. Ben Bakir, S. Boutami, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev. 4, 401–413 (2010).
[CrossRef]

T. Grosjean, I. A. Ibrahim, M. A. Suarez, G. W. Burr, M. Mivelle, and D. Charraut, “Full vectorial imaging of electromagnetic light at subwavelength scale,” Opt. Express 18, 5809–5824 (2010).
[CrossRef] [PubMed]

M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, and T. Grosjean, “Bowtie nano-aperture as interfacebetween near-fields and a single-modefiber,” Opt. Express 18, 15964–15974 (2010).
[CrossRef] [PubMed]

I. A. Ibrahim, M. Mivelle, T. Grosjean, J. T. Allegre, G. W. Burr, and F. I. Baida, “Bowtie-shaped nanoaperture: a modal study,” Opt. Lett. 35, 2448–2450 (2010).
[CrossRef] [PubMed]

A. Belarouci, T. Benyattou, X. Letartre, and P. Viktorovitch, “3D light harnessing based on coupling engineering between 1D-2D Photonic Crystal membranes and metallic nano-antenna,” Opt. Express 18, A381–A394 (2010).
[CrossRef] [PubMed]

T.-P. Vo, A. Rahmani, A. Belarouci, C. Seassal, D. Nedeljkovic, and S. Callard, “Near-field and far-field analysis of an azimuthally polarized slow bloch mode microlaser,” Opt. Express 18, 26879–26886 (2010).
[CrossRef]

2009 (4)

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[CrossRef] [PubMed]

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

G. Le Gac, A. Rahmani, C. Seassal, E. Picard, E. Hadji, and S. Callard, “Tuning of an active photonic crystal cavity by an hybrid silica/silicon near-field probe,” Opt. Express 17, 21672–21679 (2009).
[CrossRef] [PubMed]

2008 (2)

M.-P. Bernal, M. Roussey, and F. Baida, “Near- and far-field verification of electro-optic effect enhancement on a tunable lithium niobate photonic crystal,” J. Microscopy 229, 264–269 (2008).
[CrossRef]

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

2007 (1)

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

2006 (5)

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef] [PubMed]

L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14, 9902–9908 (2006).
[CrossRef] [PubMed]

C. Girard and E. Dujardin, “Near-field Optical properties of top-down and bottom-up nanostructures”, J. Opt. A. 8, S73–S86, (2006).
[CrossRef]

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy”, Phys. Rev. B 74, 205111 (2006).
[CrossRef]

E. Bortchagovsky, G. Colas des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B. 84, 49–53 (2006).
[CrossRef]

2005 (5)

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, “Tuning a two-dimensional photonic crystal resonance via optical carrier injection,” Opt. Lett. 30, 64–66 (2005).
[CrossRef] [PubMed]

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[CrossRef]

R. Wuest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

2004 (2)

2002 (3)

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. d’Yerville, D. Cassagne, J. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

S. I. Bozhevolnyi and B. Vohnsen, “Near-field imaging of optical phase and its singularities”, Opt. Commun. 212217–23 (2002).
[CrossRef]

S. Bozhevolnyi, V. Volkov, T. Søndergaard, A. Boltasseva, P. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

2001 (3)

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40, 5860–5871 (2001).
[CrossRef]

U. Schroter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001).
[CrossRef]

2000 (1)

E. Devaux, A. Dereux, E. Bourillot, J. Weeber, Y. Lacroute, J. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

1999 (1)

1997 (2)

J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–237 (1997).
[CrossRef]

R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

1993 (1)

D. Vanlabeke and D. Barchiesi, “Probes for scanning tunneling optical microscopy - a theoretical comparison,” J. Opt. Soc. Am. 10, 2193–2201 (1993).
[CrossRef]

1977 (1)

Y.R. Samii and R. Mittra, IEEE Trans. Antennas and Propagation 25, 180–187 (1977).
[CrossRef]

1954 (1)

C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys. 17, 35 (1954).
[CrossRef]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Aichele, T.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010)
[CrossRef] [PubMed]

Albert, J.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. d’Yerville, D. Cassagne, J. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Allegre, J. T.

Aspar, B.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. d’Yerville, D. Cassagne, J. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Baba, T.

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[CrossRef] [PubMed]

Bachelot, R.

Baida, F.

M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, and T. Grosjean, “Bowtie nano-aperture as interfacebetween near-fields and a single-modefiber,” Opt. Express 18, 15964–15974 (2010).
[CrossRef] [PubMed]

M.-P. Bernal, M. Roussey, and F. Baida, “Near- and far-field verification of electro-optic effect enhancement on a tunable lithium niobate photonic crystal,” J. Microscopy 229, 264–269 (2008).
[CrossRef]

Baida, F. I.

Balet, L.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Barchiesi, D.

D. Vanlabeke and D. Barchiesi, “Probes for scanning tunneling optical microscopy - a theoretical comparison,” J. Opt. Soc. Am. 10, 2193–2201 (1993).
[CrossRef]

Barth, M.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010)
[CrossRef] [PubMed]

Becker, J.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010)
[CrossRef] [PubMed]

Belarouci, A.

Ben Bakir, B.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev. 4, 401–413 (2010).
[CrossRef]

Benson, O.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010)
[CrossRef] [PubMed]

Benyattou, T.

Bernal, M.-P.

M.-P. Bernal, M. Roussey, and F. Baida, “Near- and far-field verification of electro-optic effect enhancement on a tunable lithium niobate photonic crystal,” J. Microscopy 229, 264–269 (2008).
[CrossRef]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Beversluis, M.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

Bharadwaj, P.

Birner, A.

Boltasseva, A.

S. Bozhevolnyi, V. Volkov, T. Søndergaard, A. Boltasseva, P. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

Borel, P.

S. Bozhevolnyi, V. Volkov, T. Søndergaard, A. Boltasseva, P. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

Bortchagovsky, E.

E. Bortchagovsky, G. Colas des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B. 84, 49–53 (2006).
[CrossRef]

Bourillot, E.

E. Devaux, A. Dereux, E. Bourillot, J. Weeber, Y. Lacroute, J. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Boutami, S.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev. 4, 401–413 (2010).
[CrossRef]

Bouwkamp, C. J.

C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys. 17, 35 (1954).
[CrossRef]

Bozhevolnaya, E. A.

Bozhevolnyi, S.

S. Bozhevolnyi, V. Volkov, T. Søndergaard, A. Boltasseva, P. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi and B. Vohnsen, “Near-field imaging of optical phase and its singularities”, Opt. Commun. 212217–23 (2002).
[CrossRef]

S. I. Bozhevolnyi and E. A. Bozhevolnaya, “Near-field imaging of the interference pattern of counterpropagating evanescent waves,” Opt. Lett. 24, 747–749 (1999).
[CrossRef]

Brown, T.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

Buchler, B. C.

R. Wuest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

Burr, G. W.

Burresi, M.

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[CrossRef] [PubMed]

Callard, S.

Carminati, R.

J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–237 (1997).
[CrossRef]

Cassagne, D.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. d’Yerville, D. Cassagne, J. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Charraut, D.

Cheng, B. Y.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy”, Phys. Rev. B 74, 205111 (2006).
[CrossRef]

Cluzel, B.

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Cojocaru, C.

Colas des Francs, G.

E. Bortchagovsky, G. Colas des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B. 84, 49–53 (2006).
[CrossRef]

d’Yerville, M.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. d’Yerville, D. Cassagne, J. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

de Fornel, F.

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

Deloeil, D.

Dereux, A.

U. Schroter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001).
[CrossRef]

E. Devaux, A. Dereux, E. Bourillot, J. Weeber, Y. Lacroute, J. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Deutsch, B.

Devaux, E.

E. Devaux, A. Dereux, E. Bourillot, J. Weeber, Y. Lacroute, J. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Di Cioccio, L.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev. 4, 401–413 (2010).
[CrossRef]

Dujardin, E.

C. Girard and E. Dujardin, “Near-field Optical properties of top-down and bottom-up nanostructures”, J. Opt. A. 8, S73–S86, (2006).
[CrossRef]

Ecoffet, C.

Engelen, R. J. P.

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[CrossRef] [PubMed]

Erni, D.

R. Wuest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

Fabre, N.

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Fedeli, J.-M.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev. 4, 401–413 (2010).
[CrossRef]

Feng, S.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy”, Phys. Rev. B 74, 205111 (2006).
[CrossRef]

Fiore, A.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Fischer, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010)
[CrossRef] [PubMed]

Fischer, U.

E. Bortchagovsky, G. Colas des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B. 84, 49–53 (2006).
[CrossRef]

Francardi, M.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Fromm, D.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Gérard, D.

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

Gerardino, A.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Girard, C.

C. Girard and E. Dujardin, “Near-field Optical properties of top-down and bottom-up nanostructures”, J. Opt. A. 8, S73–S86, (2006).
[CrossRef]

E. Devaux, A. Dereux, E. Bourillot, J. Weeber, Y. Lacroute, J. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Gordon, R.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N.F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 365–360 (2011).
[CrossRef]

Gösele, U.

Goudonnet, J.

E. Devaux, A. Dereux, E. Bourillot, J. Weeber, Y. Lacroute, J. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Greffet, J.

J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–237 (1997).
[CrossRef]

Grober, R.

R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Grosjean, T.

Gurioli, M.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Hadji, E.

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House: Boston, 2005).

Harbers, R.

R. Wuest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principle of Nano-Optics (Cambridge University Press, 2006).

Houyou, A.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N.F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 365–360 (2011).
[CrossRef]

Ibrahim, I. A.

Intonti, F.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Jackel, H.

R. Wuest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

Jalaguier, E.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. d’Yerville, D. Cassagne, J. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Jin, E. X.

Joannopoulos, J.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light2nd ed. (Princeton University Press, 2008).

Johnson, S.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light2nd ed. (Princeton University Press, 2008).

Juan, M. L.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N.F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 365–360 (2011).
[CrossRef]

Kafesaki, M.

Kino, G.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Koenderink, A. F.

R. Wuest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

Kramper, P.

Kristensen, M.

S. Bozhevolnyi, V. Volkov, T. Søndergaard, A. Boltasseva, P. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

Kuipers, L.

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[CrossRef] [PubMed]

Kunishi, W.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef] [PubMed]

Kwon, S.-H.

S.-H. Kwon and Y.-H. Lee, “High index-contrast 2d photonic band edge laser,” IEICE. Trans. Electron. E.87, 308–315 (2004).

Lacroute, Y.

E. Devaux, A. Dereux, E. Bourillot, J. Weeber, Y. Lacroute, J. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Lalouat, L.

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Le Gac, G.

Leclercq, J.-L.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev. 4, 401–413 (2010).
[CrossRef]

Lee, Y.-H.

S.-H. Kwon and Y.-H. Lee, “High index-contrast 2d photonic band edge laser,” IEICE. Trans. Electron. E.87, 308–315 (2004).

Letartre, X.

A. Belarouci, T. Benyattou, X. Letartre, and P. Viktorovitch, “3D light harnessing based on coupling engineering between 1D-2D Photonic Crystal membranes and metallic nano-antenna,” Opt. Express 18, A381–A394 (2010).
[CrossRef] [PubMed]

P. Viktorovitch, B. Ben Bakir, S. Boutami, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev. 4, 401–413 (2010).
[CrossRef]

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, “Tuning a two-dimensional photonic crystal resonance via optical carrier injection,” Opt. Lett. 30, 64–66 (2005).
[CrossRef] [PubMed]

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. d’Yerville, D. Cassagne, J. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Levenson, A.

Li, L. H.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Li, Z. Y.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy”, Phys. Rev. B 74, 205111 (2006).
[CrossRef]

Lippens, D.

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Liu, R. J.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy”, Phys. Rev. B 74, 205111 (2006).
[CrossRef]

Liu, Y. Z.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy”, Phys. Rev. B 74, 205111 (2006).
[CrossRef]

Löchel, B.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010)
[CrossRef] [PubMed]

Lougnot, D.

Louvion, N.

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

Ma, H. Q.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy”, Phys. Rev. B 74, 205111 (2006).
[CrossRef]

Meade, R.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light2nd ed. (Princeton University Press, 2008).

Melique, X.

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Mittra, R.

Y.R. Samii and R. Mittra, IEEE Trans. Antennas and Propagation 25, 180–187 (1977).
[CrossRef]

Mivelle, M.

Miyai, E.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef] [PubMed]

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[CrossRef]

Mlynek, J.

Moerner, W.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Molenda, D.

E. Bortchagovsky, G. Colas des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B. 84, 49–53 (2006).
[CrossRef]

Monat, C.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. d’Yerville, D. Cassagne, J. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Monnier, P.

Mori, D.

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[CrossRef] [PubMed]

Mouette, J.

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

Müller, F.

Naber, A.

E. Bortchagovsky, G. Colas des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B. 84, 49–53 (2006).
[CrossRef]

Nedeljkovic, D.

Neumann, L.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N.F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 365–360 (2011).
[CrossRef]

Noda, S.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef] [PubMed]

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[CrossRef]

Notomi, M.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[CrossRef]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

L. Novotny and B. Hecht, Principle of Nano-Optics (Cambridge University Press, 2006).

Nüsse, N.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010)
[CrossRef] [PubMed]

Ohnishi, D.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef] [PubMed]

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[CrossRef]

Okano, T.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef] [PubMed]

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[CrossRef]

Opheij, A.

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[CrossRef] [PubMed]

Pang, Y.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N.F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 365–360 (2011).
[CrossRef]

Picard, E.

Pocas, S.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. d’Yerville, D. Cassagne, J. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Prober, D.

R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Rahmani, A.

Raineri, F.

Raj, R.

Rauch, J.-Y.

Regreny, R.

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. d’Yerville, D. Cassagne, J. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Ren, C.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy”, Phys. Rev. B 74, 205111 (2006).
[CrossRef]

Riboli, F.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Robin, F.

R. Wuest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

Rojo-Romeo, P.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev. 4, 401–413 (2010).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. d’Yerville, D. Cassagne, J. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Roussey, M.

M.-P. Bernal, M. Roussey, and F. Baida, “Near- and far-field verification of electro-optic effect enhancement on a tunable lithium niobate photonic crystal,” J. Microscopy 229, 264–269 (2008).
[CrossRef]

Royer, P.

Sakaguchi, T.

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[CrossRef]

Sakai, K.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef] [PubMed]

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[CrossRef]

Salut, R.

Samii, Y.R.

Y.R. Samii and R. Mittra, IEEE Trans. Antennas and Propagation 25, 180–187 (1977).
[CrossRef]

Sandoghdar, V.

R. Wuest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

P. Kramper, M. Kafesaki, C. Soukoulis, A. Birner, F. Müller, U. Gösele, R. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).
[CrossRef] [PubMed]

Schietinger, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010)
[CrossRef] [PubMed]

Schoelkopf, R.

R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Schroter, U.

U. Schroter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001).
[CrossRef]

Schuck, P.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Seassal, C.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev. 4, 401–413 (2010).
[CrossRef]

T.-P. Vo, A. Rahmani, A. Belarouci, C. Seassal, D. Nedeljkovic, and S. Callard, “Near-field and far-field analysis of an azimuthally polarized slow bloch mode microlaser,” Opt. Express 18, 26879–26886 (2010).
[CrossRef]

G. Le Gac, A. Rahmani, C. Seassal, E. Picard, E. Hadji, and S. Callard, “Tuning of an active photonic crystal cavity by an hybrid silica/silicon near-field probe,” Opt. Express 17, 21672–21679 (2009).
[CrossRef] [PubMed]

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, “Tuning a two-dimensional photonic crystal resonance via optical carrier injection,” Opt. Lett. 30, 64–66 (2005).
[CrossRef] [PubMed]

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. d’Yerville, D. Cassagne, J. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Søndergaard, T.

S. Bozhevolnyi, V. Volkov, T. Søndergaard, A. Boltasseva, P. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

Sönnichsen, C.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010)
[CrossRef] [PubMed]

Soukoulis, C.

Strasser, P.

R. Wuest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

Suarez, M. A.

Sundaramurthy, A.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House: Boston, 2005).

Tao, H. H.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy”, Phys. Rev. B 74, 205111 (2006).
[CrossRef]

Uppuluri, S. M.

van Hulst, N.F.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N.F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 365–360 (2011).
[CrossRef]

van Oosten, D.

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[CrossRef] [PubMed]

Vanbesien, O.

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

Vanlabeke, D.

D. Vanlabeke and D. Barchiesi, “Probes for scanning tunneling optical microscopy - a theoretical comparison,” J. Opt. Soc. Am. 10, 2193–2201 (1993).
[CrossRef]

Vignolini, S.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Viktorovitch, P.

A. Belarouci, T. Benyattou, X. Letartre, and P. Viktorovitch, “3D light harnessing based on coupling engineering between 1D-2D Photonic Crystal membranes and metallic nano-antenna,” Opt. Express 18, A381–A394 (2010).
[CrossRef] [PubMed]

P. Viktorovitch, B. Ben Bakir, S. Boutami, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev. 4, 401–413 (2010).
[CrossRef]

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, “Tuning a two-dimensional photonic crystal resonance via optical carrier injection,” Opt. Lett. 30, 64–66 (2005).
[CrossRef] [PubMed]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. d’Yerville, D. Cassagne, J. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

Vo, T.-P.

Vohnsen, B.

S. I. Bozhevolnyi and B. Vohnsen, “Near-field imaging of optical phase and its singularities”, Opt. Commun. 212217–23 (2002).
[CrossRef]

Volkov, V.

S. Bozhevolnyi, V. Volkov, T. Søndergaard, A. Boltasseva, P. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

Wang, L.

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14, 9902–9908 (2006).
[CrossRef] [PubMed]

Weeber, J.

E. Devaux, A. Dereux, E. Bourillot, J. Weeber, Y. Lacroute, J. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Wehrspohn, R.

Wiersma, D. S.

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

Winn, J.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light2nd ed. (Princeton University Press, 2008).

Wu, L. A.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy”, Phys. Rev. B 74, 205111 (2006).
[CrossRef]

Wuest, R.

R. Wuest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

Xu, X.

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14, 9902–9908 (2006).
[CrossRef] [PubMed]

Youngworth, K.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

Zhang, D. Z.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy”, Phys. Rev. B 74, 205111 (2006).
[CrossRef]

Zhang, Z. B.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy”, Phys. Rev. B 74, 205111 (2006).
[CrossRef]

Zussy, M.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev. 4, 401–413 (2010).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. B. (1)

E. Bortchagovsky, G. Colas des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B. 84, 49–53 (2006).
[CrossRef]

Appl. Phys. Lett. (5)

S. Vignolini, F. Intonti, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Polarization-sensitive near-field investigation of photonic crystal microcavities,” Appl. Phys. Lett. 94, 163102 (2009).
[CrossRef]

R. Wuest, D. Erni, P. Strasser, F. Robin, H. Jackel, B. C. Buchler, A. F. Koenderink, V. Sandoghdar, and R. Harbers, “A “standing-wave meter” to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[CrossRef]

R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. d’Yerville, D. Cassagne, J. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).
[CrossRef]

IEEE Trans. Antennas and Propagation (1)

Y.R. Samii and R. Mittra, IEEE Trans. Antennas and Propagation 25, 180–187 (1977).
[CrossRef]

IEICE. Trans. Electron. (1)

S.-H. Kwon and Y.-H. Lee, “High index-contrast 2d photonic band edge laser,” IEICE. Trans. Electron. E.87, 308–315 (2004).

J. Microscopy (1)

M.-P. Bernal, M. Roussey, and F. Baida, “Near- and far-field verification of electro-optic effect enhancement on a tunable lithium niobate photonic crystal,” J. Microscopy 229, 264–269 (2008).
[CrossRef]

J. Opt. A. (1)

C. Girard and E. Dujardin, “Near-field Optical properties of top-down and bottom-up nanostructures”, J. Opt. A. 8, S73–S86, (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

D. Vanlabeke and D. Barchiesi, “Probes for scanning tunneling optical microscopy - a theoretical comparison,” J. Opt. Soc. Am. 10, 2193–2201 (1993).
[CrossRef]

Laser Photon. Rev. (1)

P. Viktorovitch, B. Ben Bakir, S. Boutami, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev. 4, 401–413 (2010).
[CrossRef]

Nano Lett. (2)

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N.F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 365–360 (2011).
[CrossRef]

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010)
[CrossRef] [PubMed]

Nature (1)

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. I. Bozhevolnyi and B. Vohnsen, “Near-field imaging of optical phase and its singularities”, Opt. Commun. 212217–23 (2002).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. B (4)

S. Bozhevolnyi, V. Volkov, T. Søndergaard, A. Boltasseva, P. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy”, Phys. Rev. B 74, 205111 (2006).
[CrossRef]

U. Schroter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420 (2001).
[CrossRef]

E. Devaux, A. Dereux, E. Bourillot, J. Weeber, Y. Lacroute, J. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Phys. Rev. Lett. (5)

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102, 033902 (2009).
[CrossRef] [PubMed]

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[CrossRef] [PubMed]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008).
[CrossRef] [PubMed]

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

Prog. Surf. Sci. (1)

J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–237 (1997).
[CrossRef]

Rep. Prog. Phys. (2)

C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys. 17, 35 (1954).
[CrossRef]

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[CrossRef]

Other (3)

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light2nd ed. (Princeton University Press, 2008).

L. Novotny and B. Hecht, Principle of Nano-Optics (Cambridge University Press, 2006).

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House: Boston, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a,b) SEM images of the probe-integrated BNA : (a) side view of the tip apex, (b) zoom of the probe apex on which the BNA is opened (scale bars : 200 nm), (c): simulation of the collection spectrum of the BNA-on-tip with a dipolar excitation within the gap. The nanoprobe is studied in contact to an air/InP interface (inset : dipole orientation with respect to the BNA).

Fig. 2
Fig. 2

(a)Overview of the PC structure with the 3D FDTD simulation of the monopolar mode at the surface of a 2D-PC slab honeycomb structure : the normalized field intensity (|Ex|2 + |Ey|2) is computed at the surface of the PC at λ =1602 nm.(b) Detail (2μm x 2μm) of the computed map of (a). Arrows represent the field polarisation orientation. (c) Vertical cross section of the sample

Fig. 3
Fig. 3

(a) Position of the excitation spot (diameter≈10μm, λ =780nm) with respect to the 2D-PC structure (40x40μm2) (image recorded in far-field with a CCD camera). (b) Far-field image of the lasing mode with a corrected objective (NA=0.75) focused at the surface of the 2D-PC. (c) and (e): topographic (shear-force) and SNOM images at the surface of the PC with the BNA tip oriented along the y-axis, respectively (see figure inset). (d) and (f) topographic (shear-force) and SNOM images at the surface of the PC with the BNA tip oriented along the x-axis, respectively (see figure inset). SNOM images are recorded at the lasing wavelength λ =1611 nm. The orientation of the sample in (d) and (f) is rotated by 90° with respect to (c) and (e). The presence of a large particle, identified as “D” in (c,d) and (e,f), indicates that the two series of near-field images have been recorded in the same area. BNA orientation kept unchanged in this study, as shown in figure insets. Number of pixels is 400x400 for near-field maps.

Fig. 4
Fig. 4

3D-FDTD simulations of the electric intensity of the SBM vs. experimental near-field images of the M-mode recorded by SNOM with BNA and conventional aperture tips. (a,c,e) simulation of the spatial profile of the electric field of the SBM (λ =1602nm): (a) total intensity |Ex|2 + |Ey|2, (c) intensity |Ex|2 of the component of the electric field parallel to the x-axis and (e) intensity |Ey|2 of the component of the electric field parallel to the y-axis. White discs represent the holes of the PC. (b,d,f) SNOM images at the emission wavelength of the PC laser (λ =1611 nm): (b) with a conventional aperture tip, (d) and (f) images recorded with a BNA-on-tip oriented along the x and y-axis, respectively. White circles represent the real PC geometry inferred from the topographic image. Numbers of pixels are 115x115 for (d), 58x58 for (f) and (b).

Fig. 5
Fig. 5

(a,b) Cross-sections along x-axis (in blue) and y-axis (in red solid) of the near-field signal collected across a unit cell by a BNA tip oriented (a) along the x-axis (cross) and (b) along the y-axis (circle) (see figure insets). Dotted curves in (a) and (b): convolution between the simulation of the electric intensity ((a): |Ex|2 along the x-axis, (b): |Ey|2 along the y-axis) and the vectorial impulse response of the BNA tip. (c) Cross-sections of the intensity along x-axis (in blue) and y-axis (in red) of the near-field image detected across the same unit cell as in (a,b) with a 200 nm diameter circular aperture tip. (d) Computed maps in one unit cell corresponding to |Ex|2 (a), |Ey|2 (b) and |Ex|2 + |Ey|2 (c).

Metrics