Abstract

A single-layer resonant-waveguide grating consisting of a sub-wavelength grating coupler etched into a waveguide is proposed in order to achieve high polarization and high spectral selectivity inside an Yb:YAG thin-disk laser resonator. The designed structure was fabricated with the help of a Lloyd’s-mirror interference lithography setup followed by reactive ion beam etching down to the desired grating groove depth. The wavelength and polarization dependent reflectivity is measured and compared to the design results. The behaviour of the device at higher temperatures is also investigated in the present work. The device is introduced as the end mirror of an Yb:YAG thin-disk laser cavity. Output powers of up to 123 W with a spectral bandwidth of about 0.5 nm (FWHM) is demonstrated in a multimode configuration (M2~6). In fundamental-mode operation (TEM00 with M2~1.1) 70 W of power with a spectral bandwidth of about 20 pm have been obtained. Moreover, the degree of linear polarization was measured to be higher than 99% for both multimode and fundamental mode operation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. A. Sychugov, A. V. Tishchenko, N. M. Lyndin, and O. Parriaux, “Waveguide coupling gratings for high-sensitivity biochemical sensors,” Sens. Actuators B Chem. 39(1-3), 360–364 (1997).
    [CrossRef]
  2. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [CrossRef] [PubMed]
  3. S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sidebands,” Opt. Lett. 19(12), 919–921 (1994).
    [CrossRef] [PubMed]
  4. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14(7), 1617–1626 (1997).
    [CrossRef]
  5. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectrique waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
    [CrossRef]
  6. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
    [CrossRef]
  7. V. A. Sychugov and A. V. Tishchenko, “Light emission from a corrugated dielectric waveguide,” Quantum Electron. 10, 326–331 (1980).
  8. A. Avrutskiǐ, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16(8), 1063–1065 (1986).
    [CrossRef]
  9. P. Vincent and M. Nevière, “Corrugated Dielectric Waveguides: a numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979).
    [CrossRef]
  10. E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
    [CrossRef]
  11. J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11, 235–241 (1980).
  12. L. Li, “Multilayer-coated diffraction gratings: differential method of Chandezon et al. revisited,” J. Opt. Soc. Am. A 11(11), 2816–2828 (1994).
    [CrossRef]
  13. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14(11), 2985–2993 (1997).
    [CrossRef]
  14. A. V. Tishchenko, “A generalised source method: new possibilities for waveguide and grating problems,” Opt. Quantum Electron. 32, 971–980 (2000).
    [CrossRef]
  15. L. B. Mashev and E. G. Loewen, “Anomalies of all-dielectric multilayer coated reflection gratings as a function of groove profile: an experimental study,” Appl. Opt. 27(1), 31–32 (1988).
    [CrossRef] [PubMed]
  16. O. Boyko, F. Lemarchand, A. Talneau, A.-L. Fehrembach, and A. Sentenac, “Experimental demonstration of ultrasharp unpolarized filtering by resonant gratings at oblique incidence,” J. Opt. Soc. Am. A 26(3), 676–679 (2009).
    [CrossRef]
  17. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23(15), 1149–1151 (1998).
    [CrossRef] [PubMed]
  18. O. Parriaux and G. J. Veldhuis, “Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors,” J. Lightwave Technol. 16(4), 573–582 (1998).
    [CrossRef]
  19. S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguide structures,” Opt. Lett. 29(17), 1989–1991 (2004).
    [CrossRef] [PubMed]
  20. V. Brioude, R. Saoudi, D. Blanc, S. Reynaud, S. Tonchev, N. M. Lyndin, and J. Molloy, “Resonant grating biosensor platform design and fabrication,” Proc. SPIE 5252, 209–216 (2004).
    [CrossRef]
  21. V. N. Bel'tyugov, S. G. Protsenko, and Y. V. Troitski, “Polarizing laser mirrors for normal light incidence,” Proc. SPIE 1782, 206–211 (1993).
    [CrossRef]
  22. M. A. Ahmed, T. Moser, F. Pigeon, O. Parriaux, and Th. Graf, “Intra-cavity polarizing element for Nd:YAG laser,” Laser Phys. Lett. 3, 129–131 (2006).
  23. N. Destouches, J. C. Pommier, O. Parriaux, T. Clausnitzer, N. M. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14(26), 12613–12622 (2006).
    [CrossRef] [PubMed]
  24. M. Abdou Ahmed, J. Schulz, A. Voss, O. Parriaux, J. C. Pommier, and Th. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32, 1824–1826 (2007).
    [CrossRef] [PubMed]
  25. F. Brückner, D. Friedrich, T. Clausnitzer, O. Burmeister, M. Britzger, E. B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, “Demonstration of a cavity coupler based on a resonant waveguide grating,” Opt. Express 17(1), 163–169 (2009).
    [CrossRef] [PubMed]
  26. M. A. Ahmed, M. Haefner, M. M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, “High-power radially polarized Yb:YAG thin-disk laser with high efficiency,” Opt. Express 19(6), 5093–5104 (2011).
    [CrossRef] [PubMed]

2011 (1)

2009 (2)

2007 (1)

2006 (2)

M. A. Ahmed, T. Moser, F. Pigeon, O. Parriaux, and Th. Graf, “Intra-cavity polarizing element for Nd:YAG laser,” Laser Phys. Lett. 3, 129–131 (2006).

N. Destouches, J. C. Pommier, O. Parriaux, T. Clausnitzer, N. M. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14(26), 12613–12622 (2006).
[CrossRef] [PubMed]

2004 (2)

S. Soria, T. Katchalski, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Enhanced two-photon fluorescence excitation by resonant grating waveguide structures,” Opt. Lett. 29(17), 1989–1991 (2004).
[CrossRef] [PubMed]

V. Brioude, R. Saoudi, D. Blanc, S. Reynaud, S. Tonchev, N. M. Lyndin, and J. Molloy, “Resonant grating biosensor platform design and fabrication,” Proc. SPIE 5252, 209–216 (2004).
[CrossRef]

2000 (1)

A. V. Tishchenko, “A generalised source method: new possibilities for waveguide and grating problems,” Opt. Quantum Electron. 32, 971–980 (2000).
[CrossRef]

1998 (2)

1997 (3)

1994 (2)

1993 (2)

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

V. N. Bel'tyugov, S. G. Protsenko, and Y. V. Troitski, “Polarizing laser mirrors for normal light incidence,” Proc. SPIE 1782, 206–211 (1993).
[CrossRef]

1989 (1)

A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

1988 (1)

1986 (2)

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
[CrossRef]

A. Avrutskiǐ, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16(8), 1063–1065 (1986).
[CrossRef]

1985 (1)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectrique waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

1980 (2)

V. A. Sychugov and A. V. Tishchenko, “Light emission from a corrugated dielectric waveguide,” Quantum Electron. 10, 326–331 (1980).

J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11, 235–241 (1980).

1979 (1)

P. Vincent and M. Nevière, “Corrugated Dielectric Waveguides: a numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979).
[CrossRef]

Abdou Ahmed, M.

Ahmed, M. A.

M. A. Ahmed, M. Haefner, M. M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, “High-power radially polarized Yb:YAG thin-disk laser with high efficiency,” Opt. Express 19(6), 5093–5104 (2011).
[CrossRef] [PubMed]

M. A. Ahmed, T. Moser, F. Pigeon, O. Parriaux, and Th. Graf, “Intra-cavity polarizing element for Nd:YAG laser,” Laser Phys. Lett. 3, 129–131 (2006).

Avrutskii, A.

A. Avrutskiǐ, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16(8), 1063–1065 (1986).
[CrossRef]

Avrutsky, A.

A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

Bel'tyugov, V. N.

V. N. Bel'tyugov, S. G. Protsenko, and Y. V. Troitski, “Polarizing laser mirrors for normal light incidence,” Proc. SPIE 1782, 206–211 (1993).
[CrossRef]

Blanc, D.

V. Brioude, R. Saoudi, D. Blanc, S. Reynaud, S. Tonchev, N. M. Lyndin, and J. Molloy, “Resonant grating biosensor platform design and fabrication,” Proc. SPIE 5252, 209–216 (2004).
[CrossRef]

Boyko, O.

Brioude, V.

V. Brioude, R. Saoudi, D. Blanc, S. Reynaud, S. Tonchev, N. M. Lyndin, and J. Molloy, “Resonant grating biosensor platform design and fabrication,” Proc. SPIE 5252, 209–216 (2004).
[CrossRef]

Britzger, M.

Brückner, F.

Burmeister, O.

Chandezon, J.

J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11, 235–241 (1980).

Clausnitzer, T.

Danzmann, K.

Destouches, N.

Fehrembach, A.-L.

Friedrich, D.

Friesem, A. A.

Giovannini, H.

Golubenko, G. A.

A. Avrutskiǐ, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16(8), 1063–1065 (1986).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectrique waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Graf, T.

Graf, Th.

M. Abdou Ahmed, J. Schulz, A. Voss, O. Parriaux, J. C. Pommier, and Th. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32, 1824–1826 (2007).
[CrossRef] [PubMed]

M. A. Ahmed, T. Moser, F. Pigeon, O. Parriaux, and Th. Graf, “Intra-cavity polarizing element for Nd:YAG laser,” Laser Phys. Lett. 3, 129–131 (2006).

Haefner, M.

Katchalski, T.

Kley, E. B.

Lemarchand, F.

Li, L.

Loewen, E. G.

Lyndin, N. M.

N. Destouches, J. C. Pommier, O. Parriaux, T. Clausnitzer, N. M. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14(26), 12613–12622 (2006).
[CrossRef] [PubMed]

V. Brioude, R. Saoudi, D. Blanc, S. Reynaud, S. Tonchev, N. M. Lyndin, and J. Molloy, “Resonant grating biosensor platform design and fabrication,” Proc. SPIE 5252, 209–216 (2004).
[CrossRef]

V. A. Sychugov, A. V. Tishchenko, N. M. Lyndin, and O. Parriaux, “Waveguide coupling gratings for high-sensitivity biochemical sensors,” Sens. Actuators B Chem. 39(1-3), 360–364 (1997).
[CrossRef]

Magnusson, R.

Marowsky, G.

Mashev, L.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
[CrossRef]

Mashev, L. B.

Maystre, D.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
[CrossRef]

J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11, 235–241 (1980).

Molloy, J.

V. Brioude, R. Saoudi, D. Blanc, S. Reynaud, S. Tonchev, N. M. Lyndin, and J. Molloy, “Resonant grating biosensor platform design and fabrication,” Proc. SPIE 5252, 209–216 (2004).
[CrossRef]

Moser, T.

M. A. Ahmed, T. Moser, F. Pigeon, O. Parriaux, and Th. Graf, “Intra-cavity polarizing element for Nd:YAG laser,” Laser Phys. Lett. 3, 129–131 (2006).

Nevière, M.

P. Vincent and M. Nevière, “Corrugated Dielectric Waveguides: a numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979).
[CrossRef]

Osten, W.

Parriaux, O.

Pigeon, F.

M. A. Ahmed, T. Moser, F. Pigeon, O. Parriaux, and Th. Graf, “Intra-cavity polarizing element for Nd:YAG laser,” Laser Phys. Lett. 3, 129–131 (2006).

Pommier, J. C.

Popov, E.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
[CrossRef]

Protsenko, S. G.

V. N. Bel'tyugov, S. G. Protsenko, and Y. V. Troitski, “Polarizing laser mirrors for normal light incidence,” Proc. SPIE 1782, 206–211 (1993).
[CrossRef]

Pruss, C.

Raoult, G.

J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11, 235–241 (1980).

Reynaud, S.

V. Brioude, R. Saoudi, D. Blanc, S. Reynaud, S. Tonchev, N. M. Lyndin, and J. Molloy, “Resonant grating biosensor platform design and fabrication,” Proc. SPIE 5252, 209–216 (2004).
[CrossRef]

Rosenblatt, D.

Saoudi, R.

V. Brioude, R. Saoudi, D. Blanc, S. Reynaud, S. Tonchev, N. M. Lyndin, and J. Molloy, “Resonant grating biosensor platform design and fabrication,” Proc. SPIE 5252, 209–216 (2004).
[CrossRef]

Schnabel, R.

Schulz, J.

Sentenac, A.

Sharon, A.

Soria, S.

Svakhin, A. S.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectrique waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Sychugov, V. A.

V. A. Sychugov, A. V. Tishchenko, N. M. Lyndin, and O. Parriaux, “Waveguide coupling gratings for high-sensitivity biochemical sensors,” Sens. Actuators B Chem. 39(1-3), 360–364 (1997).
[CrossRef]

A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

A. Avrutskiǐ, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16(8), 1063–1065 (1986).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectrique waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

V. A. Sychugov and A. V. Tishchenko, “Light emission from a corrugated dielectric waveguide,” Quantum Electron. 10, 326–331 (1980).

Talneau, A.

Teitelbaum, E.

Tibuleac, S.

Tishchenko, A. V.

A. V. Tishchenko, “A generalised source method: new possibilities for waveguide and grating problems,” Opt. Quantum Electron. 32, 971–980 (2000).
[CrossRef]

V. A. Sychugov, A. V. Tishchenko, N. M. Lyndin, and O. Parriaux, “Waveguide coupling gratings for high-sensitivity biochemical sensors,” Sens. Actuators B Chem. 39(1-3), 360–364 (1997).
[CrossRef]

A. Avrutskiǐ, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16(8), 1063–1065 (1986).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectrique waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

V. A. Sychugov and A. V. Tishchenko, “Light emission from a corrugated dielectric waveguide,” Quantum Electron. 10, 326–331 (1980).

Tonchev, S.

N. Destouches, J. C. Pommier, O. Parriaux, T. Clausnitzer, N. M. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14(26), 12613–12622 (2006).
[CrossRef] [PubMed]

V. Brioude, R. Saoudi, D. Blanc, S. Reynaud, S. Tonchev, N. M. Lyndin, and J. Molloy, “Resonant grating biosensor platform design and fabrication,” Proc. SPIE 5252, 209–216 (2004).
[CrossRef]

Troitski, Y. V.

V. N. Bel'tyugov, S. G. Protsenko, and Y. V. Troitski, “Polarizing laser mirrors for normal light incidence,” Proc. SPIE 1782, 206–211 (1993).
[CrossRef]

Tünnermann, A.

Veldhuis, G. J.

Vincent, P.

P. Vincent and M. Nevière, “Corrugated Dielectric Waveguides: a numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979).
[CrossRef]

Vogel, M. M.

Voss, A.

Wang, S. S.

Appl. Opt. (2)

Appl. Phys. (Berl.) (1)

P. Vincent and M. Nevière, “Corrugated Dielectric Waveguides: a numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

J. Opt. (Paris) (1)

J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11, 235–241 (1980).

J. Opt. Soc. Am. A (4)

Laser Phys. Lett. (1)

M. A. Ahmed, T. Moser, F. Pigeon, O. Parriaux, and Th. Graf, “Intra-cavity polarizing element for Nd:YAG laser,” Laser Phys. Lett. 3, 129–131 (2006).

Opt. Acta (Lond.) (1)

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33(5), 607–619 (1986).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

A. V. Tishchenko, “A generalised source method: new possibilities for waveguide and grating problems,” Opt. Quantum Electron. 32, 971–980 (2000).
[CrossRef]

Proc. SPIE (2)

V. Brioude, R. Saoudi, D. Blanc, S. Reynaud, S. Tonchev, N. M. Lyndin, and J. Molloy, “Resonant grating biosensor platform design and fabrication,” Proc. SPIE 5252, 209–216 (2004).
[CrossRef]

V. N. Bel'tyugov, S. G. Protsenko, and Y. V. Troitski, “Polarizing laser mirrors for normal light incidence,” Proc. SPIE 1782, 206–211 (1993).
[CrossRef]

Quantum Electron. (1)

V. A. Sychugov and A. V. Tishchenko, “Light emission from a corrugated dielectric waveguide,” Quantum Electron. 10, 326–331 (1980).

Sens. Actuators B Chem. (1)

V. A. Sychugov, A. V. Tishchenko, N. M. Lyndin, and O. Parriaux, “Waveguide coupling gratings for high-sensitivity biochemical sensors,” Sens. Actuators B Chem. 39(1-3), 360–364 (1997).
[CrossRef]

Sov. J. Quantum Electron. (2)

A. Avrutskiǐ, G. A. Golubenko, V. A. Sychugov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16(8), 1063–1065 (1986).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectrique waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated TE and TM reflectivities versus wavelength for a resonant waveguide grating (RWG) with a period of 545 nm and a groove depth of 50 nm etched into a 300 nm thick Ta2O5 layer. A cross section of the RWG is shown in the inset.

Fig. 2
Fig. 2

(a) Schematic of the Lloyd’s-mirror interference Lithography setup, (b) Photo of the Lloyd mirror assembly and (c) 3D AFM scan of the fabricated structure.

Fig. 3
Fig. 3

Spectroscopic measurements of the RWG. In (a) the measured reflectivities for TE and TM polarization are compared to the designed values. The temperature induced reflectivity shift to higher wavelengths is shown in (b).

Fig. 4
Fig. 4

Schematics of the multi-mode (M2~6) and the single transverse mode (M2~1.1) Yb:YAG thin-disk laser resonator designs. The RWG replaces one-to-one the HR end mirror. The pump diode is not represented here.

Fig. 5
Fig. 5

Power performances and spectral bandwidth measurements of the emitted beams. Pout, RWG and ηout, RWG are respectively the power and efficiency measured behind the output coupler. Pbehind, RWG and ηbehind, RWG are respectively the power and efficiency measured behind the RWG.

Metrics