Abstract

We report the generation of a real-time large computer generated hologram (CGH) using the wavefront recording plane (WRP) method with the aid of a graphics processing unit (GPU). The WRP method consists of two steps: the first step calculates a complex amplitude on a WRP that is placed between a 3D object and a CGH, from a three-dimensional (3D) object. The second step obtains a CGH by calculating diffraction from the WRP to the CGH. The disadvantages of the previous WRP method include the inability to record a large three-dimensional object that exceeds the size of the CGH, and the difficulty in implementing to all the steps on a GPU. We improved the WRP method using Shifted-Fresnel diffraction to solve the former problem, and all the steps could be implemented on a GPU. We show optical reconstructions from a 1,980 × 1,080 phase only CGH generated by about 3 × 104 object points over 90 frames per second. In other words, the improved method obtained a large CGH with about 6 mega pixels (1,980 × 1,080 × 3) from the object points at the video rate.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” Computer 38, 46–53 (2005).
    [CrossRef]
  2. S. A. Benton and V. M. Bove, Holographic Imaging (Wiley-Interscience, 2008).
    [CrossRef]
  3. M. Lucente, “Interactive Computation of holograms using a Look-up Table,” J. Electron. Imaging,  2, 28–34 (1993).
    [CrossRef]
  4. T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-parallax holographic video display system,” Opt. Eng. 46, 125801 (2007).
    [CrossRef]
  5. H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-Time Generation of Full color Image Hologram with Compact Distance Look-up Table,” OSA Topical Meeting on Digital Holography and Three-Dimensional Imaging 2009, DWC4 (2009).
  6. T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calclulation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34, 3133–3135 (2009).
    [CrossRef] [PubMed]
  7. T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18, 19504–19509 (2010).
    [CrossRef] [PubMed]
  8. P. Tsang, W.-K. Cheung, T.-C. Poon, and C. Zhou, “Holographic video at 40 frames per second for 4-million object points,” Opt. Express 19, 15205–15211 (2011).
    [CrossRef] [PubMed]
  9. R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for computational holography,” Opt. Express 15, 5631–5640 (2007).
    [CrossRef] [PubMed]
  10. J. F. Restrepo and J. Garcia-Sucerquia, “Magnified reconstruction of digitally recorded holograms by Fresnel Bluestein transform,” Appl. Opt. 49, 6430–6435 (2010).
    [CrossRef] [PubMed]
  11. F. Yaras, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19, 9147–9156 (2011).
    [CrossRef] [PubMed]

2011 (2)

2010 (2)

2009 (1)

2007 (2)

T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-parallax holographic video display system,” Opt. Eng. 46, 125801 (2007).
[CrossRef]

R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for computational holography,” Opt. Express 15, 5631–5640 (2007).
[CrossRef] [PubMed]

2005 (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” Computer 38, 46–53 (2005).
[CrossRef]

1993 (1)

M. Lucente, “Interactive Computation of holograms using a Look-up Table,” J. Electron. Imaging,  2, 28–34 (1993).
[CrossRef]

Benton, S. A.

S. A. Benton and V. M. Bove, Holographic Imaging (Wiley-Interscience, 2008).
[CrossRef]

Bove, V. M.

S. A. Benton and V. M. Bove, Holographic Imaging (Wiley-Interscience, 2008).
[CrossRef]

Cameron, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” Computer 38, 46–53 (2005).
[CrossRef]

Cheung, W.-K.

Garcia-Sucerquia, J.

Ito, T.

Kang, H.

Kitayama, R.

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-Time Generation of Full color Image Hologram with Compact Distance Look-up Table,” OSA Topical Meeting on Digital Holography and Three-Dimensional Imaging 2009, DWC4 (2009).

Lucente, M.

M. Lucente, “Interactive Computation of holograms using a Look-up Table,” J. Electron. Imaging,  2, 28–34 (1993).
[CrossRef]

Masuda, N.

Muffoletto, R. P.

Nakayama, H.

Okabe, G.

T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-parallax holographic video display system,” Opt. Eng. 46, 125801 (2007).
[CrossRef]

Onural, L.

Poon, T.-C.

Restrepo, J. F.

Shimobaba, T.

Slinger, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” Computer 38, 46–53 (2005).
[CrossRef]

Stanley, M.

C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” Computer 38, 46–53 (2005).
[CrossRef]

Tohline, J. E.

Tsang, P.

Tyler, J. M.

Yamaguchi, T.

T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-parallax holographic video display system,” Opt. Eng. 46, 125801 (2007).
[CrossRef]

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-Time Generation of Full color Image Hologram with Compact Distance Look-up Table,” OSA Topical Meeting on Digital Holography and Three-Dimensional Imaging 2009, DWC4 (2009).

Yaras, F.

Yoshikawa, H.

T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-parallax holographic video display system,” Opt. Eng. 46, 125801 (2007).
[CrossRef]

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-Time Generation of Full color Image Hologram with Compact Distance Look-up Table,” OSA Topical Meeting on Digital Holography and Three-Dimensional Imaging 2009, DWC4 (2009).

Zhou, C.

Appl. Opt. (1)

Computer (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-Generated Holography as a Generic Display Technology,” Computer 38, 46–53 (2005).
[CrossRef]

J. Electron. Imaging (1)

M. Lucente, “Interactive Computation of holograms using a Look-up Table,” J. Electron. Imaging,  2, 28–34 (1993).
[CrossRef]

Opt. Eng. (1)

T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-parallax holographic video display system,” Opt. Eng. 46, 125801 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Other (2)

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-Time Generation of Full color Image Hologram with Compact Distance Look-up Table,” OSA Topical Meeting on Digital Holography and Three-Dimensional Imaging 2009, DWC4 (2009).

S. A. Benton and V. M. Bove, Holographic Imaging (Wiley-Interscience, 2008).
[CrossRef]

Supplementary Material (3)

» Media 1: MPG (570 KB)     
» Media 2: MPG (1358 KB)     
» Media 3: MPG (2968 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

WRP method for a large 3D object using Shifted-Fresnel diffraction.

Fig. 2
Fig. 2

Two GPU implementations of the first step. “GT” stands for GPU thread. (a) Implementation 1: assigning GPU threads to object points. (b) Implementation 2: assigning GPU threads to sampling points on WRP.

Fig. 3
Fig. 3

Reconstructed 3D movies from 1,920× 1,080 phase only CGHs. (a) Reconstructed image (“Earth”) using the previous WRP method (m = 1) ( Media 1). (b) Reconstructed image (“Earth”) using the improved WRP method (m = 8) ( Media 2). (c) Reconstructed image (“Tyranno”) using the improved WRP method (m = 8) ( Media 3).

Tables (1)

Tables Icon

Table 1 Calculation times of the previous and improved WRP methods. We used “Tyranno” (11,646 points) and “Earth” (30,492 points) as 3D objects. The middle column of this table shows the calculation times using the previous WRP method. The right column shows the calculation times using the improved WRP method (this work).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u w ( x w , y w ) = j N A j exp ( i 2 π λ r w j ) ,
u ( x , y ) = exp ( i 2 π λ z ) i λ z u w ( x w , y w ) exp ( i π λ z ( ( x x w ) 2 + ( y y w ) 2 ) ) d x w d y w
= exp ( i 2 π λ z ) i λ z 1 [ [ u w ( x , y ) ] [ h ( x , y ) ] ]
u ( x , y ) = exp ( i 2 π λ z ) i λ z u w ( x w , y w ) exp ( i π λ z ( ( x m x w ) 2 + ( y m y w ) 2 ) ) d x w d y w = exp ( i 2 π λ ( z + ( 1 m ) ( x 2 + y 2 ) 2 z ) ) i λ z 1 [ [ u n ( x , y ) ] [ h n ( x , y ) ] ] ,

Metrics