Abstract

Room-temperature pulsed operation of a 1.3-µm wavelength transistor laser (TL), consisting of a buried heterostructure (BH) with an npn configuration and an AlGaInAs/InP multiple-quantum-well (MQW) active region, was successfully attained. A threshold base current of 18 mA (threshold emitter current of 150 mA) was obtained with a stripe width of 1.3 µm and a cavity length of 500 µm. The transistor activity as well as the lasing operation were achieved at the same time, which is essential for the high-speed operation of TLs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
    [CrossRef]
  2. R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
    [CrossRef]
  3. S. C. Kan, D. Vassilovski, T. C. Wu, and K. Y. Lau, “Quantum capture limited modulation bandwidth of quantum well, wire, and dot lasers,” Appl. Phys. Lett. 62(19), 2307–2309 (1993).
    [CrossRef]
  4. L. Zhang and J. P. Leburton, “Modeling of the transient characteristics of heterojunction bipolar transistor lasers,” IEEE J. Quantum Electron. 45(4), 359–366 (2009).
    [CrossRef]
  5. B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009).
    [CrossRef]
  6. M. Shirao, S. H. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
    [CrossRef]
  7. R. Nagarajan, T. Fukushima, M. Ishikawa, J. E. Bowers, R. S. Geels, and L. A. Coldren, “Transport limits in high-speed quantum-well lasers: experiment and theory,” IEEE Photon. Technol. Lett. 4(2), 121–123 (1992).
    [CrossRef]
  8. K. Furuya, Y. Suematsu, and T. Hong, “Reduction of resonancelike peak in direct modulation due to carrier diffusion in injection laser,” Appl. Opt. 17(12), 1949–1952 (1978).
    [CrossRef] [PubMed]
  9. M. Willatzen, A. Uskov, J. Mork, H. Olesen, B. Tromborg, and A. P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3(7), 606–609 (1991).
    [CrossRef]
  10. J. Shibata, Y. Mori, Y. Sasai, N. Hase, H. Serizawa, and T. Kajiwara, “Fundamental characteristics of an InGaAsP/InP laser transistor,” Electron. Lett. 21(3), 98–100 (1985).
    [CrossRef]
  11. Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/InP laser transistor,” Appl. Phys. Lett. 47(7), 649–651 (1985).
    [CrossRef]
  12. G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85(20), 4768–4770 (2004).
    [CrossRef]
  13. R. Chan, M. Feng, J. N. Holonyak, and G. Walter, “Microwave operation and modulation of a transistor laser,” Appl. Phys. Lett. 86(13), 131114 (2005).
    [CrossRef]
  14. R. Chan, M. Feng, N. Holonyak, A. James, and G. Walter, “Collector current map of gain and stimulated recombination on the base quantum well transitions of a transistor laser,” Appl. Phys. Lett. 88(14), 143508 (2006).
    [CrossRef]
  15. G. Walter, A. James, J. N. Holonyak, and M. Feng, “Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement,” Appl. Phys. Lett. 90(9), 091109 (2007).
    [CrossRef]
  16. M. Feng, J. N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
    [CrossRef]
  17. H. W. Then, G. Walter, M. Feng, and J. N. Holonyak, “Optical bandwidth enhancement of heterojunction bipolar transistor laser operation with an auxiliary base signal,” Appl. Phys. Lett. 93(16), 163504 (2008).
    [CrossRef]
  18. H. W. Then, C. H. Wu, G. Walter, M. Feng, and J. N. Holonyak, “Electrical-optical signal mixing and multiplication (2–> 22 GHz) with a tunnel junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
    [CrossRef]
  19. Z. Duan, W. Shi, L. Chrostowski, X. Huang, N. Zhou, and G. Chai, “Design and epitaxy of 1.5 microm InGaAsP-InP MQW material for a transistor laser,” Opt. Express 18(2), 1501–1509 (2010).
    [CrossRef] [PubMed]
  20. F. Dixon, M. Feng, J. N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544 nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
    [CrossRef]
  21. M. Shirao, T. Sato, Y. Takino, N. Sato, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of 1.3-µm transistor laser with AlGaInAs/InP quantum wells,” Appl. Phys. Express 4(7), 072101 (2011).
    [CrossRef]
  22. N. Sato, Y. Takino, M. Shirao, T. Sato, N. Nishiyama, and S. Arai, “Effect of thermal cleaning on regrowth interface quality of AlGaInAs/InP buried heterostructure lasers,” The 38th International Symposium on Compound Semiconductors (ISCS2011), Berlin, Germany, paper P5.60 (2011).
  23. M. Shirao, T. Sato, Y. Takino, N. Sato, N. Nishiyama, and S. Arai, “Lasing operation of long-wavelength transistor laser using AlGaInAs/InP quantum well active region,” The 23rd International Conference on Indium Phosphide and Related Material (IPRM2011),Berlin, Germany, paper Tu.3.2.4 (2011).
  24. W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
    [CrossRef]
  25. M. Shirao, “Study of hetero junction bipolar Transistor type optical devices,” PhD Thesis, Tokyo Institute of Technology, Tokyo, Japan, 49–76 (2011).

2011

M. Shirao, S. H. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[CrossRef]

M. Shirao, T. Sato, Y. Takino, N. Sato, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of 1.3-µm transistor laser with AlGaInAs/InP quantum wells,” Appl. Phys. Express 4(7), 072101 (2011).
[CrossRef]

2010

2009

L. Zhang and J. P. Leburton, “Modeling of the transient characteristics of heterojunction bipolar transistor lasers,” IEEE J. Quantum Electron. 45(4), 359–366 (2009).
[CrossRef]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009).
[CrossRef]

H. W. Then, C. H. Wu, G. Walter, M. Feng, and J. N. Holonyak, “Electrical-optical signal mixing and multiplication (2–> 22 GHz) with a tunnel junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[CrossRef]

2008

H. W. Then, G. Walter, M. Feng, and J. N. Holonyak, “Optical bandwidth enhancement of heterojunction bipolar transistor laser operation with an auxiliary base signal,” Appl. Phys. Lett. 93(16), 163504 (2008).
[CrossRef]

F. Dixon, M. Feng, J. N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544 nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[CrossRef]

2007

G. Walter, A. James, J. N. Holonyak, and M. Feng, “Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement,” Appl. Phys. Lett. 90(9), 091109 (2007).
[CrossRef]

M. Feng, J. N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[CrossRef]

2006

R. Chan, M. Feng, N. Holonyak, A. James, and G. Walter, “Collector current map of gain and stimulated recombination on the base quantum well transitions of a transistor laser,” Appl. Phys. Lett. 88(14), 143508 (2006).
[CrossRef]

2005

R. Chan, M. Feng, J. N. Holonyak, and G. Walter, “Microwave operation and modulation of a transistor laser,” Appl. Phys. Lett. 86(13), 131114 (2005).
[CrossRef]

2004

G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85(20), 4768–4770 (2004).
[CrossRef]

2000

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

1993

S. C. Kan, D. Vassilovski, T. C. Wu, and K. Y. Lau, “Quantum capture limited modulation bandwidth of quantum well, wire, and dot lasers,” Appl. Phys. Lett. 62(19), 2307–2309 (1993).
[CrossRef]

1992

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[CrossRef]

R. Nagarajan, T. Fukushima, M. Ishikawa, J. E. Bowers, R. S. Geels, and L. A. Coldren, “Transport limits in high-speed quantum-well lasers: experiment and theory,” IEEE Photon. Technol. Lett. 4(2), 121–123 (1992).
[CrossRef]

1991

M. Willatzen, A. Uskov, J. Mork, H. Olesen, B. Tromborg, and A. P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3(7), 606–609 (1991).
[CrossRef]

1985

J. Shibata, Y. Mori, Y. Sasai, N. Hase, H. Serizawa, and T. Kajiwara, “Fundamental characteristics of an InGaAsP/InP laser transistor,” Electron. Lett. 21(3), 98–100 (1985).
[CrossRef]

Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/InP laser transistor,” Appl. Phys. Lett. 47(7), 649–651 (1985).
[CrossRef]

1978

Arai, S.

M. Shirao, S. H. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[CrossRef]

M. Shirao, T. Sato, Y. Takino, N. Sato, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of 1.3-µm transistor laser with AlGaInAs/InP quantum wells,” Appl. Phys. Express 4(7), 072101 (2011).
[CrossRef]

Bowers, J. E.

R. Nagarajan, T. Fukushima, M. Ishikawa, J. E. Bowers, R. S. Geels, and L. A. Coldren, “Transport limits in high-speed quantum-well lasers: experiment and theory,” IEEE Photon. Technol. Lett. 4(2), 121–123 (1992).
[CrossRef]

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[CrossRef]

Chai, G.

Chan, R.

R. Chan, M. Feng, N. Holonyak, A. James, and G. Walter, “Collector current map of gain and stimulated recombination on the base quantum well transitions of a transistor laser,” Appl. Phys. Lett. 88(14), 143508 (2006).
[CrossRef]

R. Chan, M. Feng, J. N. Holonyak, and G. Walter, “Microwave operation and modulation of a transistor laser,” Appl. Phys. Lett. 86(13), 131114 (2005).
[CrossRef]

G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85(20), 4768–4770 (2004).
[CrossRef]

Chrostowski, L.

Z. Duan, W. Shi, L. Chrostowski, X. Huang, N. Zhou, and G. Chai, “Design and epitaxy of 1.5 microm InGaAsP-InP MQW material for a transistor laser,” Opt. Express 18(2), 1501–1509 (2010).
[CrossRef] [PubMed]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009).
[CrossRef]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[CrossRef]

Coldren, L. A.

R. Nagarajan, T. Fukushima, M. Ishikawa, J. E. Bowers, R. S. Geels, and L. A. Coldren, “Transport limits in high-speed quantum-well lasers: experiment and theory,” IEEE Photon. Technol. Lett. 4(2), 121–123 (1992).
[CrossRef]

Dixon, F.

F. Dixon, M. Feng, J. N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544 nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

Duan, Z.

Dupuis, R. D.

F. Dixon, M. Feng, J. N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544 nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

Faraji, B.

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009).
[CrossRef]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[CrossRef]

Feng, M.

H. W. Then, C. H. Wu, G. Walter, M. Feng, and J. N. Holonyak, “Electrical-optical signal mixing and multiplication (2–> 22 GHz) with a tunnel junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[CrossRef]

H. W. Then, G. Walter, M. Feng, and J. N. Holonyak, “Optical bandwidth enhancement of heterojunction bipolar transistor laser operation with an auxiliary base signal,” Appl. Phys. Lett. 93(16), 163504 (2008).
[CrossRef]

F. Dixon, M. Feng, J. N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544 nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

G. Walter, A. James, J. N. Holonyak, and M. Feng, “Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement,” Appl. Phys. Lett. 90(9), 091109 (2007).
[CrossRef]

M. Feng, J. N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[CrossRef]

R. Chan, M. Feng, N. Holonyak, A. James, and G. Walter, “Collector current map of gain and stimulated recombination on the base quantum well transitions of a transistor laser,” Appl. Phys. Lett. 88(14), 143508 (2006).
[CrossRef]

R. Chan, M. Feng, J. N. Holonyak, and G. Walter, “Microwave operation and modulation of a transistor laser,” Appl. Phys. Lett. 86(13), 131114 (2005).
[CrossRef]

G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85(20), 4768–4770 (2004).
[CrossRef]

Fukushima, T.

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[CrossRef]

R. Nagarajan, T. Fukushima, M. Ishikawa, J. E. Bowers, R. S. Geels, and L. A. Coldren, “Transport limits in high-speed quantum-well lasers: experiment and theory,” IEEE Photon. Technol. Lett. 4(2), 121–123 (1992).
[CrossRef]

Furuya, K.

Geels, R. S.

R. Nagarajan, T. Fukushima, M. Ishikawa, J. E. Bowers, R. S. Geels, and L. A. Coldren, “Transport limits in high-speed quantum-well lasers: experiment and theory,” IEEE Photon. Technol. Lett. 4(2), 121–123 (1992).
[CrossRef]

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[CrossRef]

Hase, N.

J. Shibata, Y. Mori, Y. Sasai, N. Hase, H. Serizawa, and T. Kajiwara, “Fundamental characteristics of an InGaAsP/InP laser transistor,” Electron. Lett. 21(3), 98–100 (1985).
[CrossRef]

Holonyak, J. N.

H. W. Then, C. H. Wu, G. Walter, M. Feng, and J. N. Holonyak, “Electrical-optical signal mixing and multiplication (2–> 22 GHz) with a tunnel junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[CrossRef]

H. W. Then, G. Walter, M. Feng, and J. N. Holonyak, “Optical bandwidth enhancement of heterojunction bipolar transistor laser operation with an auxiliary base signal,” Appl. Phys. Lett. 93(16), 163504 (2008).
[CrossRef]

F. Dixon, M. Feng, J. N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544 nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

M. Feng, J. N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[CrossRef]

G. Walter, A. James, J. N. Holonyak, and M. Feng, “Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement,” Appl. Phys. Lett. 90(9), 091109 (2007).
[CrossRef]

R. Chan, M. Feng, J. N. Holonyak, and G. Walter, “Microwave operation and modulation of a transistor laser,” Appl. Phys. Lett. 86(13), 131114 (2005).
[CrossRef]

Holonyak, N.

R. Chan, M. Feng, N. Holonyak, A. James, and G. Walter, “Collector current map of gain and stimulated recombination on the base quantum well transitions of a transistor laser,” Appl. Phys. Lett. 88(14), 143508 (2006).
[CrossRef]

G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85(20), 4768–4770 (2004).
[CrossRef]

Hong, T.

Huang, X.

Huang, Y.

F. Dixon, M. Feng, J. N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544 nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

Ishikawa, M.

R. Nagarajan, T. Fukushima, M. Ishikawa, J. E. Bowers, R. S. Geels, and L. A. Coldren, “Transport limits in high-speed quantum-well lasers: experiment and theory,” IEEE Photon. Technol. Lett. 4(2), 121–123 (1992).
[CrossRef]

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[CrossRef]

James, A.

G. Walter, A. James, J. N. Holonyak, and M. Feng, “Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement,” Appl. Phys. Lett. 90(9), 091109 (2007).
[CrossRef]

R. Chan, M. Feng, N. Holonyak, A. James, and G. Walter, “Collector current map of gain and stimulated recombination on the base quantum well transitions of a transistor laser,” Appl. Phys. Lett. 88(14), 143508 (2006).
[CrossRef]

Jauho, A. P.

M. Willatzen, A. Uskov, J. Mork, H. Olesen, B. Tromborg, and A. P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3(7), 606–609 (1991).
[CrossRef]

Kajiwara, T.

J. Shibata, Y. Mori, Y. Sasai, N. Hase, H. Serizawa, and T. Kajiwara, “Fundamental characteristics of an InGaAsP/InP laser transistor,” Electron. Lett. 21(3), 98–100 (1985).
[CrossRef]

Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/InP laser transistor,” Appl. Phys. Lett. 47(7), 649–651 (1985).
[CrossRef]

Kan, S. C.

S. C. Kan, D. Vassilovski, T. C. Wu, and K. Y. Lau, “Quantum capture limited modulation bandwidth of quantum well, wire, and dot lasers,” Appl. Phys. Lett. 62(19), 2307–2309 (1993).
[CrossRef]

Lau, K. Y.

S. C. Kan, D. Vassilovski, T. C. Wu, and K. Y. Lau, “Quantum capture limited modulation bandwidth of quantum well, wire, and dot lasers,” Appl. Phys. Lett. 62(19), 2307–2309 (1993).
[CrossRef]

Leburton, J. P.

L. Zhang and J. P. Leburton, “Modeling of the transient characteristics of heterojunction bipolar transistor lasers,” IEEE J. Quantum Electron. 45(4), 359–366 (2009).
[CrossRef]

Lee, S. H.

M. Shirao, S. H. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Mori, Y.

Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/InP laser transistor,” Appl. Phys. Lett. 47(7), 649–651 (1985).
[CrossRef]

J. Shibata, Y. Mori, Y. Sasai, N. Hase, H. Serizawa, and T. Kajiwara, “Fundamental characteristics of an InGaAsP/InP laser transistor,” Electron. Lett. 21(3), 98–100 (1985).
[CrossRef]

Mork, J.

M. Willatzen, A. Uskov, J. Mork, H. Olesen, B. Tromborg, and A. P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3(7), 606–609 (1991).
[CrossRef]

Nagarajan, R.

R. Nagarajan, T. Fukushima, M. Ishikawa, J. E. Bowers, R. S. Geels, and L. A. Coldren, “Transport limits in high-speed quantum-well lasers: experiment and theory,” IEEE Photon. Technol. Lett. 4(2), 121–123 (1992).
[CrossRef]

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[CrossRef]

Nishiyama, N.

M. Shirao, S. H. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[CrossRef]

M. Shirao, T. Sato, Y. Takino, N. Sato, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of 1.3-µm transistor laser with AlGaInAs/InP quantum wells,” Appl. Phys. Express 4(7), 072101 (2011).
[CrossRef]

Olesen, H.

M. Willatzen, A. Uskov, J. Mork, H. Olesen, B. Tromborg, and A. P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3(7), 606–609 (1991).
[CrossRef]

Pulfrey, D. L.

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009).
[CrossRef]

Ryou, J. H.

F. Dixon, M. Feng, J. N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544 nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

Sasai, Y.

J. Shibata, Y. Mori, Y. Sasai, N. Hase, H. Serizawa, and T. Kajiwara, “Fundamental characteristics of an InGaAsP/InP laser transistor,” Electron. Lett. 21(3), 98–100 (1985).
[CrossRef]

Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/InP laser transistor,” Appl. Phys. Lett. 47(7), 649–651 (1985).
[CrossRef]

Sato, N.

M. Shirao, T. Sato, Y. Takino, N. Sato, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of 1.3-µm transistor laser with AlGaInAs/InP quantum wells,” Appl. Phys. Express 4(7), 072101 (2011).
[CrossRef]

Sato, T.

M. Shirao, T. Sato, Y. Takino, N. Sato, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of 1.3-µm transistor laser with AlGaInAs/InP quantum wells,” Appl. Phys. Express 4(7), 072101 (2011).
[CrossRef]

Serizawa, H.

Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/InP laser transistor,” Appl. Phys. Lett. 47(7), 649–651 (1985).
[CrossRef]

J. Shibata, Y. Mori, Y. Sasai, N. Hase, H. Serizawa, and T. Kajiwara, “Fundamental characteristics of an InGaAsP/InP laser transistor,” Electron. Lett. 21(3), 98–100 (1985).
[CrossRef]

Shi, W.

Z. Duan, W. Shi, L. Chrostowski, X. Huang, N. Zhou, and G. Chai, “Design and epitaxy of 1.5 microm InGaAsP-InP MQW material for a transistor laser,” Opt. Express 18(2), 1501–1509 (2010).
[CrossRef] [PubMed]

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009).
[CrossRef]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[CrossRef]

Shibata, J.

Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/InP laser transistor,” Appl. Phys. Lett. 47(7), 649–651 (1985).
[CrossRef]

J. Shibata, Y. Mori, Y. Sasai, N. Hase, H. Serizawa, and T. Kajiwara, “Fundamental characteristics of an InGaAsP/InP laser transistor,” Electron. Lett. 21(3), 98–100 (1985).
[CrossRef]

Shirao, M.

M. Shirao, S. H. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[CrossRef]

M. Shirao, T. Sato, Y. Takino, N. Sato, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of 1.3-µm transistor laser with AlGaInAs/InP quantum wells,” Appl. Phys. Express 4(7), 072101 (2011).
[CrossRef]

Suematsu, Y.

Takino, Y.

M. Shirao, T. Sato, Y. Takino, N. Sato, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of 1.3-µm transistor laser with AlGaInAs/InP quantum wells,” Appl. Phys. Express 4(7), 072101 (2011).
[CrossRef]

Then, H. W.

H. W. Then, C. H. Wu, G. Walter, M. Feng, and J. N. Holonyak, “Electrical-optical signal mixing and multiplication (2–> 22 GHz) with a tunnel junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[CrossRef]

H. W. Then, G. Walter, M. Feng, and J. N. Holonyak, “Optical bandwidth enhancement of heterojunction bipolar transistor laser operation with an auxiliary base signal,” Appl. Phys. Lett. 93(16), 163504 (2008).
[CrossRef]

M. Feng, J. N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[CrossRef]

Tromborg, B.

M. Willatzen, A. Uskov, J. Mork, H. Olesen, B. Tromborg, and A. P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3(7), 606–609 (1991).
[CrossRef]

Uskov, A.

M. Willatzen, A. Uskov, J. Mork, H. Olesen, B. Tromborg, and A. P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3(7), 606–609 (1991).
[CrossRef]

Vassilovski, D.

S. C. Kan, D. Vassilovski, T. C. Wu, and K. Y. Lau, “Quantum capture limited modulation bandwidth of quantum well, wire, and dot lasers,” Appl. Phys. Lett. 62(19), 2307–2309 (1993).
[CrossRef]

Walter, G.

H. W. Then, C. H. Wu, G. Walter, M. Feng, and J. N. Holonyak, “Electrical-optical signal mixing and multiplication (2–> 22 GHz) with a tunnel junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[CrossRef]

H. W. Then, G. Walter, M. Feng, and J. N. Holonyak, “Optical bandwidth enhancement of heterojunction bipolar transistor laser operation with an auxiliary base signal,” Appl. Phys. Lett. 93(16), 163504 (2008).
[CrossRef]

M. Feng, J. N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[CrossRef]

G. Walter, A. James, J. N. Holonyak, and M. Feng, “Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement,” Appl. Phys. Lett. 90(9), 091109 (2007).
[CrossRef]

R. Chan, M. Feng, N. Holonyak, A. James, and G. Walter, “Collector current map of gain and stimulated recombination on the base quantum well transitions of a transistor laser,” Appl. Phys. Lett. 88(14), 143508 (2006).
[CrossRef]

R. Chan, M. Feng, J. N. Holonyak, and G. Walter, “Microwave operation and modulation of a transistor laser,” Appl. Phys. Lett. 86(13), 131114 (2005).
[CrossRef]

G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85(20), 4768–4770 (2004).
[CrossRef]

Willatzen, M.

M. Willatzen, A. Uskov, J. Mork, H. Olesen, B. Tromborg, and A. P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3(7), 606–609 (1991).
[CrossRef]

Wu, C. H.

H. W. Then, C. H. Wu, G. Walter, M. Feng, and J. N. Holonyak, “Electrical-optical signal mixing and multiplication (2–> 22 GHz) with a tunnel junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[CrossRef]

Wu, T. C.

S. C. Kan, D. Vassilovski, T. C. Wu, and K. Y. Lau, “Quantum capture limited modulation bandwidth of quantum well, wire, and dot lasers,” Appl. Phys. Lett. 62(19), 2307–2309 (1993).
[CrossRef]

Zhang, L.

L. Zhang and J. P. Leburton, “Modeling of the transient characteristics of heterojunction bipolar transistor lasers,” IEEE J. Quantum Electron. 45(4), 359–366 (2009).
[CrossRef]

Zhang, X. B.

F. Dixon, M. Feng, J. N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544 nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

Zhou, N.

Appl. Opt.

Appl. Phys. Express

M. Shirao, T. Sato, Y. Takino, N. Sato, N. Nishiyama, and S. Arai, “Room-temperature continuous-wave operation of 1.3-µm transistor laser with AlGaInAs/InP quantum wells,” Appl. Phys. Express 4(7), 072101 (2011).
[CrossRef]

Appl. Phys. Lett.

F. Dixon, M. Feng, J. N. Holonyak, Y. Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Transistor laser with emission wavelength at 1544 nm,” Appl. Phys. Lett. 93(2), 021111 (2008).
[CrossRef]

S. C. Kan, D. Vassilovski, T. C. Wu, and K. Y. Lau, “Quantum capture limited modulation bandwidth of quantum well, wire, and dot lasers,” Appl. Phys. Lett. 62(19), 2307–2309 (1993).
[CrossRef]

Y. Mori, J. Shibata, Y. Sasai, H. Serizawa, and T. Kajiwara, “Operation principle of the InGaAsP/InP laser transistor,” Appl. Phys. Lett. 47(7), 649–651 (1985).
[CrossRef]

G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85(20), 4768–4770 (2004).
[CrossRef]

R. Chan, M. Feng, J. N. Holonyak, and G. Walter, “Microwave operation and modulation of a transistor laser,” Appl. Phys. Lett. 86(13), 131114 (2005).
[CrossRef]

R. Chan, M. Feng, N. Holonyak, A. James, and G. Walter, “Collector current map of gain and stimulated recombination on the base quantum well transitions of a transistor laser,” Appl. Phys. Lett. 88(14), 143508 (2006).
[CrossRef]

G. Walter, A. James, J. N. Holonyak, and M. Feng, “Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement,” Appl. Phys. Lett. 90(9), 091109 (2007).
[CrossRef]

M. Feng, J. N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of transistor laser operation,” Appl. Phys. Lett. 91(5), 053501 (2007).
[CrossRef]

H. W. Then, G. Walter, M. Feng, and J. N. Holonyak, “Optical bandwidth enhancement of heterojunction bipolar transistor laser operation with an auxiliary base signal,” Appl. Phys. Lett. 93(16), 163504 (2008).
[CrossRef]

H. W. Then, C. H. Wu, G. Walter, M. Feng, and J. N. Holonyak, “Electrical-optical signal mixing and multiplication (2–> 22 GHz) with a tunnel junction transistor laser,” Appl. Phys. Lett. 94(10), 101114 (2009).
[CrossRef]

Electron. Lett.

J. Shibata, Y. Mori, Y. Sasai, N. Hase, H. Serizawa, and T. Kajiwara, “Fundamental characteristics of an InGaAsP/InP laser transistor,” Electron. Lett. 21(3), 98–100 (1985).
[CrossRef]

IEEE J. Quantum Electron.

L. Zhang and J. P. Leburton, “Modeling of the transient characteristics of heterojunction bipolar transistor lasers,” IEEE J. Quantum Electron. 45(4), 359–366 (2009).
[CrossRef]

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[CrossRef]

M. Shirao, S. H. Lee, N. Nishiyama, and S. Arai, “Large-signal analysis of a transistor laser,” IEEE J. Quantum Electron. 47(3), 359–367 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 594–603 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Nagarajan, T. Fukushima, M. Ishikawa, J. E. Bowers, R. S. Geels, and L. A. Coldren, “Transport limits in high-speed quantum-well lasers: experiment and theory,” IEEE Photon. Technol. Lett. 4(2), 121–123 (1992).
[CrossRef]

M. Willatzen, A. Uskov, J. Mork, H. Olesen, B. Tromborg, and A. P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3(7), 606–609 (1991).
[CrossRef]

W. Shi, L. Chrostowski, and B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(24), 2141–2143 (2008).
[CrossRef]

Opt. Express

Proc. IEEE

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Other

M. Shirao, “Study of hetero junction bipolar Transistor type optical devices,” PhD Thesis, Tokyo Institute of Technology, Tokyo, Japan, 49–76 (2011).

N. Sato, Y. Takino, M. Shirao, T. Sato, N. Nishiyama, and S. Arai, “Effect of thermal cleaning on regrowth interface quality of AlGaInAs/InP buried heterostructure lasers,” The 38th International Symposium on Compound Semiconductors (ISCS2011), Berlin, Germany, paper P5.60 (2011).

M. Shirao, T. Sato, Y. Takino, N. Sato, N. Nishiyama, and S. Arai, “Lasing operation of long-wavelength transistor laser using AlGaInAs/InP quantum well active region,” The 23rd International Conference on Indium Phosphide and Related Material (IPRM2011),Berlin, Germany, paper Tu.3.2.4 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fabrication processes of AlGaInAs/InP npn-TL with BH structure.

Fig. 2
Fig. 2

Cross-sectional SEM image of fabricated device.

Fig. 3
Fig. 3

RT pulse measurements for an npn TL with a cavity length of 500 µm and a stripe width of 1.3 µm. (a) Optical output power as a function of base current (black line) under two-terminal configuration and (red lines) common-emitter (CE) configuration for various VCE (0.1 V steps). (b) Lasing spectrum at a bias current of two times threshold.

Fig. 4
Fig. 4

Collector-emitter voltage dependences of threshold base current and external differential quantum efficiency estimated from Fig. 3(a).

Fig. 5
Fig. 5

Collector-emitter voltage dependence of the collector current with 5 mA steps for the base current to 50 mA under the CE configuration.

Fig. 6
Fig. 6

Emitter current dependence of the output power and the emitter base voltage under a common base (CB) configuration with a 0.5 V of collector base voltage step. Dashed lines show that VCB = 0.

Metrics