Abstract

Excitation power and temperature dependences of the photoluminescence (PL) spectra are studied in InGaN/GaN multiple quantum wells (MQWs). The excitation power dependences of the PL peak energy and linewidth indicate that the emission process of the MQWs is dominated first by the Coulomb screening effect and then by the localized states filling at low temperature, and that the nonradiative centers are thermally activated in low excitation range at room temperature. The anomalous temperature dependences of the peak energy and linewidth are well explained by the localized carrier hopping and thermalization process, and by the exponentially increased density of states with energy in the band tail. Moreover, it is also found that internal quantum efficiency is related to the mechanism conversion from nonradiative to radiative mechanism, and up to the carriers escaping from localized states.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode (Springer, Berlin, 2000).
  2. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
    [CrossRef]
  3. T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys. 37(Part 2, No. 5A), L479–L481 (1998).
    [CrossRef]
  4. S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16(4), 2204–2214 (1998).
    [CrossRef]
  5. G. Sun, G. B. Xu, Y. J. Ding, H. P. Zhao, G. Y. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
    [CrossRef]
  6. Y. Yamane, K. Fujiwara, and J. K. Sheu, “Largely variable electroluminescence efficiency with current and temperature in a blue (In, Ga)N multiple-quantum-well diode,” Appl. Phys. Lett. 91(7), 073501 (2007).
    [CrossRef]
  7. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110(11), 113110 (2011).
    [CrossRef]
  8. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
    [CrossRef] [PubMed]
  9. Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
    [CrossRef]
  10. Y.-H. Cho, B. D. Little, G. H. Gainer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “Carrier dynamics of abnormal temperature-dependent emission shift in MOCVD-grown InGaN epilayers and InGaN/GaN quantum wells,” MRS Internet J. Nitride Semicond. Res. 4S1, G2.4 (1999).
  11. H. P. D. Schenk, M. Leroux, and P. de Mierry, “Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck–Shockley relation,” J. Appl. Phys. 88(3), 1525–1534 (2000).
    [CrossRef]
  12. K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P. Liu, and I. G. Chen, “Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84(17), 3307–3309 (2004).
    [CrossRef]
  13. G. Franssen, T. Suski, M. Kryśko, A. Khachapuridze, R. Kudrawiec, J. Misiewicz, A. Kamińska, E. Feltin, and N. Grandjean, “Built-in electric field and large Stokes shift in near-lattice-matched GaN/AlInN quantum wells,” Appl. Phys. Lett. 92(20), 201901 (2008).
    [CrossRef]
  14. K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, and I. G. Chen, “Studies of InGaN/GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85(3), 401–403 (2004).
    [CrossRef]
  15. D. Monroe, “Hopping exponential band tails,” Phys. Rev. Lett. 54(2), 146–149 (1985).
    [CrossRef] [PubMed]
  16. S. D. Baranovskii, R. Eichmann, and P. Thomas, “Temperature-dependent exciton luminescence in quantum wells by computer simulation,” Phys. Rev. B 58(19), 13081–13087 (1998).
    [CrossRef]
  17. M. Grünewald, B. Movaghar, B. Pohlmann, and D. Würtz, “Hopping theory of band-tail relaxation in disordered semiconductors,” Phys. Rev. B Condens. Matter 32(12), 8191–8196 (1985).
    [CrossRef] [PubMed]
  18. K. Kazlauskas, G. Tamulaitis, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, “Double-scaled potential profile in a group-III nitride alloy revealed by Monte Carlo simulation of exciton hopping,” Appl. Phys. Lett. 83(18), 3722–3724 (2003).
    [CrossRef]
  19. K. Kazlauskas, G. Tamulaitis, P. Pobedinskas, A. Žukauskas, M. Springis, C.-F. Huang, Y.-C. Cheng, and C. C. Yang, “Exciton hopping in InxGa1−xN multiple quantum wells,” Phys. Rev. B 71(8), 085306 (2005).
    [CrossRef]
  20. P. G. Eliseev, P. Perlin, J. Lee, and M. Osiński, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569–571 (1997).
    [CrossRef]
  21. P. G. Eliseev, “The red σ2/kT spectral shift in partially disordered semiconductors,” J. Appl. Phys. 93(9), 5404–5415 (2003).
    [CrossRef]
  22. J. Orenstein and M. Kastner, “Photocurrent transient spectroscopy: measurement of the density of localized states in a-As2Se3,” Phys. Rev. Lett. 46(21), 1421–1424 (1981).
    [CrossRef]
  23. I. Mártil, E. Redondo, and A. Ojeda, “Influence of defects on the electrical and optical characteristics of blue light-emitting diodes based on III–V nitrides,” J. Appl. Phys. 81(5), 2442–2444 (1997).
    [CrossRef]
  24. X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
    [CrossRef]
  25. H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
    [CrossRef] [PubMed]
  26. H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
    [CrossRef]
  27. G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
    [CrossRef] [PubMed]
  28. H. P. Zhao, G. Y. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
    [CrossRef]
  29. R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
    [CrossRef]
  30. H. P. Zhao, G. Y. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes,” Appl. Phys. Lett. 97(13), 131114 (2010).
    [CrossRef]
  31. Y.-J. Lee, H.-C. Kuo, T.-C. Lu, S.-C. Wang, K. W. Ng, K. M. Lau, Z.-P. Yang, A. S.-P. Chang, and S.-Y. Lin, “Study of GaN-based light-emitting diodes grown on chemical wet-etching-patterned sapphire substrate with V-shaped pits roughening surfaces,” J. Lightwave Technol. 26(11), 1455–1463 (2008).
    [CrossRef]

2011 (4)

G. Sun, G. B. Xu, Y. J. Ding, H. P. Zhao, G. Y. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110(11), 113110 (2011).
[CrossRef]

G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[CrossRef] [PubMed]

H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

2010 (3)

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

H. P. Zhao, G. Y. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes,” Appl. Phys. Lett. 97(13), 131114 (2010).
[CrossRef]

H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[CrossRef]

2009 (1)

H. P. Zhao, G. Y. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[CrossRef]

2008 (2)

Y.-J. Lee, H.-C. Kuo, T.-C. Lu, S.-C. Wang, K. W. Ng, K. M. Lau, Z.-P. Yang, A. S.-P. Chang, and S.-Y. Lin, “Study of GaN-based light-emitting diodes grown on chemical wet-etching-patterned sapphire substrate with V-shaped pits roughening surfaces,” J. Lightwave Technol. 26(11), 1455–1463 (2008).
[CrossRef]

G. Franssen, T. Suski, M. Kryśko, A. Khachapuridze, R. Kudrawiec, J. Misiewicz, A. Kamińska, E. Feltin, and N. Grandjean, “Built-in electric field and large Stokes shift in near-lattice-matched GaN/AlInN quantum wells,” Appl. Phys. Lett. 92(20), 201901 (2008).
[CrossRef]

2007 (1)

Y. Yamane, K. Fujiwara, and J. K. Sheu, “Largely variable electroluminescence efficiency with current and temperature in a blue (In, Ga)N multiple-quantum-well diode,” Appl. Phys. Lett. 91(7), 073501 (2007).
[CrossRef]

2005 (1)

K. Kazlauskas, G. Tamulaitis, P. Pobedinskas, A. Žukauskas, M. Springis, C.-F. Huang, Y.-C. Cheng, and C. C. Yang, “Exciton hopping in InxGa1−xN multiple quantum wells,” Phys. Rev. B 71(8), 085306 (2005).
[CrossRef]

2004 (2)

K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, and I. G. Chen, “Studies of InGaN/GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85(3), 401–403 (2004).
[CrossRef]

K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P. Liu, and I. G. Chen, “Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84(17), 3307–3309 (2004).
[CrossRef]

2003 (2)

P. G. Eliseev, “The red σ2/kT spectral shift in partially disordered semiconductors,” J. Appl. Phys. 93(9), 5404–5415 (2003).
[CrossRef]

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, “Double-scaled potential profile in a group-III nitride alloy revealed by Monte Carlo simulation of exciton hopping,” Appl. Phys. Lett. 83(18), 3722–3724 (2003).
[CrossRef]

2002 (1)

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[CrossRef]

2000 (1)

H. P. D. Schenk, M. Leroux, and P. de Mierry, “Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck–Shockley relation,” J. Appl. Phys. 88(3), 1525–1534 (2000).
[CrossRef]

1998 (4)

S. D. Baranovskii, R. Eichmann, and P. Thomas, “Temperature-dependent exciton luminescence in quantum wells by computer simulation,” Phys. Rev. B 58(19), 13081–13087 (1998).
[CrossRef]

T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys. 37(Part 2, No. 5A), L479–L481 (1998).
[CrossRef]

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16(4), 2204–2214 (1998).
[CrossRef]

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

1997 (2)

P. G. Eliseev, P. Perlin, J. Lee, and M. Osiński, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569–571 (1997).
[CrossRef]

I. Mártil, E. Redondo, and A. Ojeda, “Influence of defects on the electrical and optical characteristics of blue light-emitting diodes based on III–V nitrides,” J. Appl. Phys. 81(5), 2442–2444 (1997).
[CrossRef]

1996 (1)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[CrossRef]

1985 (3)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

M. Grünewald, B. Movaghar, B. Pohlmann, and D. Würtz, “Hopping theory of band-tail relaxation in disordered semiconductors,” Phys. Rev. B Condens. Matter 32(12), 8191–8196 (1985).
[CrossRef] [PubMed]

D. Monroe, “Hopping exponential band tails,” Phys. Rev. Lett. 54(2), 146–149 (1985).
[CrossRef] [PubMed]

1981 (1)

J. Orenstein and M. Kastner, “Photocurrent transient spectroscopy: measurement of the density of localized states in a-As2Se3,” Phys. Rev. Lett. 46(21), 1421–1424 (1981).
[CrossRef]

Baranovskii, S. D.

S. D. Baranovskii, R. Eichmann, and P. Thomas, “Temperature-dependent exciton luminescence in quantum wells by computer simulation,” Phys. Rev. B 58(19), 13081–13087 (1998).
[CrossRef]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Cao, X. A.

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[CrossRef]

Chang, A. S.-P.

Chang, S. J.

K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P. Liu, and I. G. Chen, “Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84(17), 3307–3309 (2004).
[CrossRef]

K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, and I. G. Chen, “Studies of InGaN/GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85(3), 401–403 (2004).
[CrossRef]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Chen, C. H.

K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, and I. G. Chen, “Studies of InGaN/GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85(3), 401–403 (2004).
[CrossRef]

Chen, I. G.

K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P. Liu, and I. G. Chen, “Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84(17), 3307–3309 (2004).
[CrossRef]

K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, and I. G. Chen, “Studies of InGaN/GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85(3), 401–403 (2004).
[CrossRef]

Cheng, Y.-C.

K. Kazlauskas, G. Tamulaitis, P. Pobedinskas, A. Žukauskas, M. Springis, C.-F. Huang, Y.-C. Cheng, and C. C. Yang, “Exciton hopping in InxGa1−xN multiple quantum wells,” Phys. Rev. B 71(8), 085306 (2005).
[CrossRef]

Chichibu, S.

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16(4), 2204–2214 (1998).
[CrossRef]

Cho, Y.-H.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

de Mierry, P.

H. P. D. Schenk, M. Leroux, and P. de Mierry, “Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck–Shockley relation,” J. Appl. Phys. 88(3), 1525–1534 (2000).
[CrossRef]

DenBaars, S. P.

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Dierolf, V.

H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

H. P. Zhao, G. Y. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[CrossRef]

Ding, Y. J.

G. Sun, G. B. Xu, Y. J. Ding, H. P. Zhao, G. Y. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

Eichmann, R.

S. D. Baranovskii, R. Eichmann, and P. Thomas, “Temperature-dependent exciton luminescence in quantum wells by computer simulation,” Phys. Rev. B 58(19), 13081–13087 (1998).
[CrossRef]

Eliseev, P. G.

P. G. Eliseev, “The red σ2/kT spectral shift in partially disordered semiconductors,” J. Appl. Phys. 93(9), 5404–5415 (2003).
[CrossRef]

P. G. Eliseev, P. Perlin, J. Lee, and M. Osiński, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569–571 (1997).
[CrossRef]

Farrell, R. M.

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

Feltin, E.

G. Franssen, T. Suski, M. Kryśko, A. Khachapuridze, R. Kudrawiec, J. Misiewicz, A. Kamińska, E. Feltin, and N. Grandjean, “Built-in electric field and large Stokes shift in near-lattice-matched GaN/AlInN quantum wells,” Appl. Phys. Lett. 92(20), 201901 (2008).
[CrossRef]

Fischer, A. J.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Franssen, G.

G. Franssen, T. Suski, M. Kryśko, A. Khachapuridze, R. Kudrawiec, J. Misiewicz, A. Kamińska, E. Feltin, and N. Grandjean, “Built-in electric field and large Stokes shift in near-lattice-matched GaN/AlInN quantum wells,” Appl. Phys. Lett. 92(20), 201901 (2008).
[CrossRef]

Fujito, K.

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

Fujiwara, K.

Y. Yamane, K. Fujiwara, and J. K. Sheu, “Largely variable electroluminescence efficiency with current and temperature in a blue (In, Ga)N multiple-quantum-well diode,” Appl. Phys. Lett. 91(7), 073501 (2007).
[CrossRef]

Gainer, G. H.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Gaska, R.

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, “Double-scaled potential profile in a group-III nitride alloy revealed by Monte Carlo simulation of exciton hopping,” Appl. Phys. Lett. 83(18), 3722–3724 (2003).
[CrossRef]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Grandjean, N.

G. Franssen, T. Suski, M. Kryśko, A. Khachapuridze, R. Kudrawiec, J. Misiewicz, A. Kamińska, E. Feltin, and N. Grandjean, “Built-in electric field and large Stokes shift in near-lattice-matched GaN/AlInN quantum wells,” Appl. Phys. Lett. 92(20), 201901 (2008).
[CrossRef]

Grünewald, M.

M. Grünewald, B. Movaghar, B. Pohlmann, and D. Würtz, “Hopping theory of band-tail relaxation in disordered semiconductors,” Phys. Rev. B Condens. Matter 32(12), 8191–8196 (1985).
[CrossRef] [PubMed]

Haeger, D. A.

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

Hsu, P. S.

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

Huang, C.-F.

K. Kazlauskas, G. Tamulaitis, P. Pobedinskas, A. Žukauskas, M. Springis, C.-F. Huang, Y.-C. Cheng, and C. C. Yang, “Exciton hopping in InxGa1−xN multiple quantum wells,” Phys. Rev. B 71(8), 085306 (2005).
[CrossRef]

Huang, G. S.

H. P. Zhao, G. Y. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[CrossRef]

Iwasa, N.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[CrossRef]

Juang, F. S.

K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, and I. G. Chen, “Studies of InGaN/GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85(3), 401–403 (2004).
[CrossRef]

Kaminska, A.

G. Franssen, T. Suski, M. Kryśko, A. Khachapuridze, R. Kudrawiec, J. Misiewicz, A. Kamińska, E. Feltin, and N. Grandjean, “Built-in electric field and large Stokes shift in near-lattice-matched GaN/AlInN quantum wells,” Appl. Phys. Lett. 92(20), 201901 (2008).
[CrossRef]

Kastner, M.

J. Orenstein and M. Kastner, “Photocurrent transient spectroscopy: measurement of the density of localized states in a-As2Se3,” Phys. Rev. Lett. 46(21), 1421–1424 (1981).
[CrossRef]

Kazlauskas, K.

K. Kazlauskas, G. Tamulaitis, P. Pobedinskas, A. Žukauskas, M. Springis, C.-F. Huang, Y.-C. Cheng, and C. C. Yang, “Exciton hopping in InxGa1−xN multiple quantum wells,” Phys. Rev. B 71(8), 085306 (2005).
[CrossRef]

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, “Double-scaled potential profile in a group-III nitride alloy revealed by Monte Carlo simulation of exciton hopping,” Appl. Phys. Lett. 83(18), 3722–3724 (2003).
[CrossRef]

Keller, S.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Kerr, B.

K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P. Liu, and I. G. Chen, “Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84(17), 3307–3309 (2004).
[CrossRef]

Khachapuridze, A.

G. Franssen, T. Suski, M. Kryśko, A. Khachapuridze, R. Kudrawiec, J. Misiewicz, A. Kamińska, E. Feltin, and N. Grandjean, “Built-in electric field and large Stokes shift in near-lattice-matched GaN/AlInN quantum wells,” Appl. Phys. Lett. 92(20), 201901 (2008).
[CrossRef]

Khan, M. A.

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, “Double-scaled potential profile in a group-III nitride alloy revealed by Monte Carlo simulation of exciton hopping,” Appl. Phys. Lett. 83(18), 3722–3724 (2003).
[CrossRef]

Kiyoku, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[CrossRef]

Kretchmer, J.

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[CrossRef]

Krysko, M.

G. Franssen, T. Suski, M. Kryśko, A. Khachapuridze, R. Kudrawiec, J. Misiewicz, A. Kamińska, E. Feltin, and N. Grandjean, “Built-in electric field and large Stokes shift in near-lattice-matched GaN/AlInN quantum wells,” Appl. Phys. Lett. 92(20), 201901 (2008).
[CrossRef]

Kudrawiec, R.

G. Franssen, T. Suski, M. Kryśko, A. Khachapuridze, R. Kudrawiec, J. Misiewicz, A. Kamińska, E. Feltin, and N. Grandjean, “Built-in electric field and large Stokes shift in near-lattice-matched GaN/AlInN quantum wells,” Appl. Phys. Lett. 92(20), 201901 (2008).
[CrossRef]

Kuo, H.-C.

Lau, K. M.

LeBoeuf, S. F.

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[CrossRef]

Lee, J.

P. G. Eliseev, P. Perlin, J. Lee, and M. Osiński, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569–571 (1997).
[CrossRef]

Lee, Y.-J.

Leroux, M.

H. P. D. Schenk, M. Leroux, and P. de Mierry, “Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck–Shockley relation,” J. Appl. Phys. 88(3), 1525–1534 (2000).
[CrossRef]

Li, X.-H.

H. P. Zhao, G. Y. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[CrossRef]

Lin, S.-Y.

Liu, G. Y.

G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[CrossRef] [PubMed]

G. Sun, G. B. Xu, Y. J. Ding, H. P. Zhao, G. Y. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

H. P. Zhao, G. Y. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes,” Appl. Phys. Lett. 97(13), 131114 (2010).
[CrossRef]

H. P. Zhao, G. Y. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[CrossRef]

Liu, H. P.

K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P. Liu, and I. G. Chen, “Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84(17), 3307–3309 (2004).
[CrossRef]

K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, and I. G. Chen, “Studies of InGaN/GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85(3), 401–403 (2004).
[CrossRef]

Lu, T.-C.

Mártil, I.

I. Mártil, E. Redondo, and A. Ojeda, “Influence of defects on the electrical and optical characteristics of blue light-emitting diodes based on III–V nitrides,” J. Appl. Phys. 81(5), 2442–2444 (1997).
[CrossRef]

Matsushita, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[CrossRef]

Mawst, L. J.

G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[CrossRef] [PubMed]

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Mishra, U. K.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Misiewicz, J.

G. Franssen, T. Suski, M. Kryśko, A. Khachapuridze, R. Kudrawiec, J. Misiewicz, A. Kamińska, E. Feltin, and N. Grandjean, “Built-in electric field and large Stokes shift in near-lattice-matched GaN/AlInN quantum wells,” Appl. Phys. Lett. 92(20), 201901 (2008).
[CrossRef]

Monroe, D.

D. Monroe, “Hopping exponential band tails,” Phys. Rev. Lett. 54(2), 146–149 (1985).
[CrossRef] [PubMed]

Movaghar, B.

M. Grünewald, B. Movaghar, B. Pohlmann, and D. Würtz, “Hopping theory of band-tail relaxation in disordered semiconductors,” Phys. Rev. B Condens. Matter 32(12), 8191–8196 (1985).
[CrossRef] [PubMed]

Mukai, T.

T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys. 37(Part 2, No. 5A), L479–L481 (1998).
[CrossRef]

Nagahama, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[CrossRef]

Nakamura, S.

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16(4), 2204–2214 (1998).
[CrossRef]

T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys. 37(Part 2, No. 5A), L479–L481 (1998).
[CrossRef]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[CrossRef]

Narimatsu, H.

T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys. 37(Part 2, No. 5A), L479–L481 (1998).
[CrossRef]

Ng, K. W.

Ojeda, A.

I. Mártil, E. Redondo, and A. Ojeda, “Influence of defects on the electrical and optical characteristics of blue light-emitting diodes based on III–V nitrides,” J. Appl. Phys. 81(5), 2442–2444 (1997).
[CrossRef]

Orenstein, J.

J. Orenstein and M. Kastner, “Photocurrent transient spectroscopy: measurement of the density of localized states in a-As2Se3,” Phys. Rev. Lett. 46(21), 1421–1424 (1981).
[CrossRef]

Osinski, M.

P. G. Eliseev, P. Perlin, J. Lee, and M. Osiński, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569–571 (1997).
[CrossRef]

Park, J. H.

G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[CrossRef] [PubMed]

Penn, S. T.

H. P. Zhao, G. Y. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[CrossRef]

Perlin, P.

P. G. Eliseev, P. Perlin, J. Lee, and M. Osiński, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569–571 (1997).
[CrossRef]

Pobedinskas, P.

K. Kazlauskas, G. Tamulaitis, P. Pobedinskas, A. Žukauskas, M. Springis, C.-F. Huang, Y.-C. Cheng, and C. C. Yang, “Exciton hopping in InxGa1−xN multiple quantum wells,” Phys. Rev. B 71(8), 085306 (2005).
[CrossRef]

Pohlmann, B.

M. Grünewald, B. Movaghar, B. Pohlmann, and D. Würtz, “Hopping theory of band-tail relaxation in disordered semiconductors,” Phys. Rev. B Condens. Matter 32(12), 8191–8196 (1985).
[CrossRef] [PubMed]

Poplawsky, J. D.

H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

H. P. Zhao, G. Y. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[CrossRef]

Ramaiah, K. S.

K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P. Liu, and I. G. Chen, “Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84(17), 3307–3309 (2004).
[CrossRef]

K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, and I. G. Chen, “Studies of InGaN/GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85(3), 401–403 (2004).
[CrossRef]

Redondo, E.

I. Mártil, E. Redondo, and A. Ojeda, “Influence of defects on the electrical and optical characteristics of blue light-emitting diodes based on III–V nitrides,” J. Appl. Phys. 81(5), 2442–2444 (1997).
[CrossRef]

Sandvik, P. M.

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[CrossRef]

Schenk, H. P. D.

H. P. D. Schenk, M. Leroux, and P. de Mierry, “Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck–Shockley relation,” J. Appl. Phys. 88(3), 1525–1534 (2000).
[CrossRef]

Senoh, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[CrossRef]

Sheu, J. K.

Y. Yamane, K. Fujiwara, and J. K. Sheu, “Largely variable electroluminescence efficiency with current and temperature in a blue (In, Ga)N multiple-quantum-well diode,” Appl. Phys. Lett. 91(7), 073501 (2007).
[CrossRef]

Shur, M. S.

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, “Double-scaled potential profile in a group-III nitride alloy revealed by Monte Carlo simulation of exciton hopping,” Appl. Phys. Lett. 83(18), 3722–3724 (2003).
[CrossRef]

Simin, G.

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, “Double-scaled potential profile in a group-III nitride alloy revealed by Monte Carlo simulation of exciton hopping,” Appl. Phys. Lett. 83(18), 3722–3724 (2003).
[CrossRef]

Song, J. J.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

Sota, T.

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16(4), 2204–2214 (1998).
[CrossRef]

Speck, J. S.

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

Springis, M.

K. Kazlauskas, G. Tamulaitis, P. Pobedinskas, A. Žukauskas, M. Springis, C.-F. Huang, Y.-C. Cheng, and C. C. Yang, “Exciton hopping in InxGa1−xN multiple quantum wells,” Phys. Rev. B 71(8), 085306 (2005).
[CrossRef]

Stokes, E. B.

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[CrossRef]

Su, Y. K.

K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, and I. G. Chen, “Studies of InGaN/GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85(3), 401–403 (2004).
[CrossRef]

K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P. Liu, and I. G. Chen, “Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84(17), 3307–3309 (2004).
[CrossRef]

Sugimoto, Y.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[CrossRef]

Sun, G.

G. Sun, G. B. Xu, Y. J. Ding, H. P. Zhao, G. Y. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

Suski, T.

G. Franssen, T. Suski, M. Kryśko, A. Khachapuridze, R. Kudrawiec, J. Misiewicz, A. Kamińska, E. Feltin, and N. Grandjean, “Built-in electric field and large Stokes shift in near-lattice-matched GaN/AlInN quantum wells,” Appl. Phys. Lett. 92(20), 201901 (2008).
[CrossRef]

Tamulaitis, G.

K. Kazlauskas, G. Tamulaitis, P. Pobedinskas, A. Žukauskas, M. Springis, C.-F. Huang, Y.-C. Cheng, and C. C. Yang, “Exciton hopping in InxGa1−xN multiple quantum wells,” Phys. Rev. B 71(8), 085306 (2005).
[CrossRef]

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, “Double-scaled potential profile in a group-III nitride alloy revealed by Monte Carlo simulation of exciton hopping,” Appl. Phys. Lett. 83(18), 3722–3724 (2003).
[CrossRef]

Tansu, N.

G. Sun, G. B. Xu, Y. J. Ding, H. P. Zhao, G. Y. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[CrossRef] [PubMed]

H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110(11), 113110 (2011).
[CrossRef]

H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[CrossRef]

H. P. Zhao, G. Y. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes,” Appl. Phys. Lett. 97(13), 131114 (2010).
[CrossRef]

H. P. Zhao, G. Y. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[CrossRef]

Thomas, P.

S. D. Baranovskii, R. Eichmann, and P. Thomas, “Temperature-dependent exciton luminescence in quantum wells by computer simulation,” Phys. Rev. B 58(19), 13081–13087 (1998).
[CrossRef]

Wada, K.

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16(4), 2204–2214 (1998).
[CrossRef]

Walker, D.

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[CrossRef]

Wang, S.-C.

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Würtz, D.

M. Grünewald, B. Movaghar, B. Pohlmann, and D. Würtz, “Hopping theory of band-tail relaxation in disordered semiconductors,” Phys. Rev. B Condens. Matter 32(12), 8191–8196 (1985).
[CrossRef] [PubMed]

Xu, G. B.

G. Sun, G. B. Xu, Y. J. Ding, H. P. Zhao, G. Y. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

Yamada, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[CrossRef]

Yamane, Y.

Y. Yamane, K. Fujiwara, and J. K. Sheu, “Largely variable electroluminescence efficiency with current and temperature in a blue (In, Ga)N multiple-quantum-well diode,” Appl. Phys. Lett. 91(7), 073501 (2007).
[CrossRef]

Yang, C. C.

K. Kazlauskas, G. Tamulaitis, P. Pobedinskas, A. Žukauskas, M. Springis, C.-F. Huang, Y.-C. Cheng, and C. C. Yang, “Exciton hopping in InxGa1−xN multiple quantum wells,” Phys. Rev. B 71(8), 085306 (2005).
[CrossRef]

Yang, J. W.

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, “Double-scaled potential profile in a group-III nitride alloy revealed by Monte Carlo simulation of exciton hopping,” Appl. Phys. Lett. 83(18), 3722–3724 (2003).
[CrossRef]

Yang, Z.-P.

Zhang, J.

G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[CrossRef] [PubMed]

G. Sun, G. B. Xu, Y. J. Ding, H. P. Zhao, G. Y. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110(11), 113110 (2011).
[CrossRef]

H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, “Double-scaled potential profile in a group-III nitride alloy revealed by Monte Carlo simulation of exciton hopping,” Appl. Phys. Lett. 83(18), 3722–3724 (2003).
[CrossRef]

Zhao, H. P.

G. Sun, G. B. Xu, Y. J. Ding, H. P. Zhao, G. Y. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[CrossRef] [PubMed]

H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[CrossRef]

H. P. Zhao, G. Y. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes,” Appl. Phys. Lett. 97(13), 131114 (2010).
[CrossRef]

H. P. Zhao, G. Y. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[CrossRef]

Žukauskas, A.

K. Kazlauskas, G. Tamulaitis, P. Pobedinskas, A. Žukauskas, M. Springis, C.-F. Huang, Y.-C. Cheng, and C. C. Yang, “Exciton hopping in InxGa1−xN multiple quantum wells,” Phys. Rev. B 71(8), 085306 (2005).
[CrossRef]

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, “Double-scaled potential profile in a group-III nitride alloy revealed by Monte Carlo simulation of exciton hopping,” Appl. Phys. Lett. 83(18), 3722–3724 (2003).
[CrossRef]

Appl. Phys. Lett. (11)

G. Sun, G. B. Xu, Y. J. Ding, H. P. Zhao, G. Y. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

Y. Yamane, K. Fujiwara, and J. K. Sheu, “Largely variable electroluminescence efficiency with current and temperature in a blue (In, Ga)N multiple-quantum-well diode,” Appl. Phys. Lett. 91(7), 073501 (2007).
[CrossRef]

K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P. Liu, and I. G. Chen, “Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84(17), 3307–3309 (2004).
[CrossRef]

G. Franssen, T. Suski, M. Kryśko, A. Khachapuridze, R. Kudrawiec, J. Misiewicz, A. Kamińska, E. Feltin, and N. Grandjean, “Built-in electric field and large Stokes shift in near-lattice-matched GaN/AlInN quantum wells,” Appl. Phys. Lett. 92(20), 201901 (2008).
[CrossRef]

K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, and I. G. Chen, “Studies of InGaN/GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85(3), 401–403 (2004).
[CrossRef]

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[CrossRef]

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, “Double-scaled potential profile in a group-III nitride alloy revealed by Monte Carlo simulation of exciton hopping,” Appl. Phys. Lett. 83(18), 3722–3724 (2003).
[CrossRef]

P. G. Eliseev, P. Perlin, J. Lee, and M. Osiński, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71(5), 569–571 (1997).
[CrossRef]

H. P. Zhao, G. Y. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009).
[CrossRef]

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010).
[CrossRef]

H. P. Zhao, G. Y. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes,” Appl. Phys. Lett. 97(13), 131114 (2010).
[CrossRef]

IEEE Electron Device Lett. (1)

X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23(9), 535–537 (2002).
[CrossRef]

J. Appl. Phys. (5)

H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010).
[CrossRef]

H. P. D. Schenk, M. Leroux, and P. de Mierry, “Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck–Shockley relation,” J. Appl. Phys. 88(3), 1525–1534 (2000).
[CrossRef]

I. Mártil, E. Redondo, and A. Ojeda, “Influence of defects on the electrical and optical characteristics of blue light-emitting diodes based on III–V nitrides,” J. Appl. Phys. 81(5), 2442–2444 (1997).
[CrossRef]

P. G. Eliseev, “The red σ2/kT spectral shift in partially disordered semiconductors,” J. Appl. Phys. 93(9), 5404–5415 (2003).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110(11), 113110 (2011).
[CrossRef]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. B (1)

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16(4), 2204–2214 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (2)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(Part 2, No. 1B), L74–L76 (1996).
[CrossRef]

T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys. 37(Part 2, No. 5A), L479–L481 (1998).
[CrossRef]

Nanoscale Res. Lett. (1)

G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (2)

K. Kazlauskas, G. Tamulaitis, P. Pobedinskas, A. Žukauskas, M. Springis, C.-F. Huang, Y.-C. Cheng, and C. C. Yang, “Exciton hopping in InxGa1−xN multiple quantum wells,” Phys. Rev. B 71(8), 085306 (2005).
[CrossRef]

S. D. Baranovskii, R. Eichmann, and P. Thomas, “Temperature-dependent exciton luminescence in quantum wells by computer simulation,” Phys. Rev. B 58(19), 13081–13087 (1998).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

M. Grünewald, B. Movaghar, B. Pohlmann, and D. Würtz, “Hopping theory of band-tail relaxation in disordered semiconductors,” Phys. Rev. B Condens. Matter 32(12), 8191–8196 (1985).
[CrossRef] [PubMed]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

D. Monroe, “Hopping exponential band tails,” Phys. Rev. Lett. 54(2), 146–149 (1985).
[CrossRef] [PubMed]

J. Orenstein and M. Kastner, “Photocurrent transient spectroscopy: measurement of the density of localized states in a-As2Se3,” Phys. Rev. Lett. 46(21), 1421–1424 (1981).
[CrossRef]

Other (2)

Y.-H. Cho, B. D. Little, G. H. Gainer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “Carrier dynamics of abnormal temperature-dependent emission shift in MOCVD-grown InGaN epilayers and InGaN/GaN quantum wells,” MRS Internet J. Nitride Semicond. Res. 4S1, G2.4 (1999).

S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode (Springer, Berlin, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Emission peak energy and full width at half maximum (FWHM) as a function of excitation power for the InGaN/GaN MQWs at 6 K (a) and 300 K (b).

Fig. 2
Fig. 2

Temperature dependence of PL peak energy (a) and FWHM (b) measured at different excitation powers. The temperature Tmin and Tmax, corresponding to the minimum and maximum of the peak energy at different excitation powers, respectively, are shown by the arrow as a guide to the eye. The solid curve is calculated using the band-tail model [Eq. (1)]. The box marks the initial decreasing of the temperature dependent linewidth in the temperature range of T < 40 K.

Fig. 3
Fig. 3

Schematic diagrams indicating the possible mechanism of carriers transferring in the MQWs structure at different T at P = 0.05 mW. (a)–(d) represent respectively the case of the carriers distribution at lowest T (such as 6 K), Tmin (60 K), a T slightly higher than Tmin, and a T close to Tmax.

Fig. 4
Fig. 4

The values of σ (a), Tmin and Tmax (b) obtained at various excitation powers [see Fig. 2(a)], as a function of the excitation power.

Fig. 5
Fig. 5

Internal quantum efficiency (a) and integrated PL intensity at 6 and 300 K (b) of MQWs as a function of the excitation power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E( T )= E g ( 0 ) α T 2 T+β σ 2 k B T
g(E)= N L / k T 0 exp( E/ k T 0 )
I P F

Metrics