Abstract

A monitoring technique using the equivalent optical admittance loci of thin films to control the deposition is presented. Real-time broadband spectrum measurements are employed to extract the real-time thin film refraction index and thickness, and the corresponding equivalent optical admittance is thereby obtained. This monitoring method can predict the termination point of the deposition process and avoid the termination ambiguities, which generally appear with other broadband monitors. Compared to other monitoring methods, the experimental results of the proposed monitoring technique show better error compensation ability.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. van der Laan, “Optical monitoring of nonquarterwave stacks,” Appl. Opt. 25(5), 753–760 (1986).
    [CrossRef] [PubMed]
  2. H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin-film optical filters,” Opt. Acta (Lond.) 19(1), 1–28 (1972).
    [CrossRef]
  3. C. C. Lee, K. Wu, C. C. Kuo, and S. H. Chen, “Improvement of the optical coating process by cutting layers with sensitive monitor wavelengths,” Opt. Express 13(13), 4854–4861 (2005).
    [CrossRef]
  4. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46(20), 4294–4303 (2007).
    [CrossRef] [PubMed]
  5. S. Wilbrandt, N. Kaiser, and O. Stenzel, “In-situ broadband monitoring of heterogeneous optical coatings,” Thin Solid Films 502(1-2), 153–157 (2006).
    [CrossRef]
  6. H. A. Macleod and E. Pelletier, “Error compensation mechanisms in some thin-film monitor systems,” Opt. Acta (Lond.) 24(9), 907–930 (1977).
    [CrossRef]
  7. C. C. Lee and Y. J. Chen, “Multilayer coatings monitoring using admittance diagram,” Opt. Express 16(9), 6119–6124 (2008).
    [CrossRef] [PubMed]
  8. K. Wu, Research on optical monitor through optical admittance analysis and dynamic interferometry, Ph. D. Dissertation, (Department of Optics and Photonics, National Central University 2005), Chap. 5.
  9. C. C. Lee, K. Wu, S. H. Chen, and S. J. Ma, “Optical monitoring and real time admittance loci calculation through polarization interferometer,” Opt. Express 15(26), 17536–17541 (2007).
    [CrossRef] [PubMed]
  10. B. Chun, C. K. Hwangbo, and J. S. Kim, “Optical monitoring of nonquarterwave layers of dielectric multilayer filters using optical admittance,” Opt. Express 14(6), 2473–2480 (2006).
    [CrossRef] [PubMed]
  11. C. C. Lee and K. Wu, “In situ sensitive optical monitoring with proper error compensation,” Opt. Lett. 32(15), 2118–2120 (2007).
    [CrossRef] [PubMed]
  12. H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Inst. of Physics Publishing 2001), Chap. 2.
  13. K. Wu, M. C. Li, J. C. Wyant, N. J. Brock, B. Kimbrough, and C. C. Lee, “Optical admittance monitor through a dynamic interferometer,” Optical Interference Coating, USA TuC5 (2010).

2008 (1)

2007 (3)

2006 (2)

S. Wilbrandt, N. Kaiser, and O. Stenzel, “In-situ broadband monitoring of heterogeneous optical coatings,” Thin Solid Films 502(1-2), 153–157 (2006).
[CrossRef]

B. Chun, C. K. Hwangbo, and J. S. Kim, “Optical monitoring of nonquarterwave layers of dielectric multilayer filters using optical admittance,” Opt. Express 14(6), 2473–2480 (2006).
[CrossRef] [PubMed]

2005 (1)

1986 (1)

1977 (1)

H. A. Macleod and E. Pelletier, “Error compensation mechanisms in some thin-film monitor systems,” Opt. Acta (Lond.) 24(9), 907–930 (1977).
[CrossRef]

1972 (1)

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin-film optical filters,” Opt. Acta (Lond.) 19(1), 1–28 (1972).
[CrossRef]

Badoil, B.

Cathelinaud, M.

Chen, S. H.

Chen, Y. J.

Chun, B.

Hwangbo, C. K.

Kaiser, N.

S. Wilbrandt, N. Kaiser, and O. Stenzel, “In-situ broadband monitoring of heterogeneous optical coatings,” Thin Solid Films 502(1-2), 153–157 (2006).
[CrossRef]

Kim, J. S.

Kuo, C. C.

Lee, C. C.

Lemarchand, F.

Lequime, M.

Ma, S. J.

Macleod, H. A.

H. A. Macleod and E. Pelletier, “Error compensation mechanisms in some thin-film monitor systems,” Opt. Acta (Lond.) 24(9), 907–930 (1977).
[CrossRef]

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin-film optical filters,” Opt. Acta (Lond.) 19(1), 1–28 (1972).
[CrossRef]

Pelletier, E.

H. A. Macleod and E. Pelletier, “Error compensation mechanisms in some thin-film monitor systems,” Opt. Acta (Lond.) 24(9), 907–930 (1977).
[CrossRef]

Stenzel, O.

S. Wilbrandt, N. Kaiser, and O. Stenzel, “In-situ broadband monitoring of heterogeneous optical coatings,” Thin Solid Films 502(1-2), 153–157 (2006).
[CrossRef]

van der Laan, C. J.

Wilbrandt, S.

S. Wilbrandt, N. Kaiser, and O. Stenzel, “In-situ broadband monitoring of heterogeneous optical coatings,” Thin Solid Films 502(1-2), 153–157 (2006).
[CrossRef]

Wu, K.

Appl. Opt. (2)

Opt. Acta (Lond.) (2)

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin-film optical filters,” Opt. Acta (Lond.) 19(1), 1–28 (1972).
[CrossRef]

H. A. Macleod and E. Pelletier, “Error compensation mechanisms in some thin-film monitor systems,” Opt. Acta (Lond.) 24(9), 907–930 (1977).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Thin Solid Films (1)

S. Wilbrandt, N. Kaiser, and O. Stenzel, “In-situ broadband monitoring of heterogeneous optical coatings,” Thin Solid Films 502(1-2), 153–157 (2006).
[CrossRef]

Other (3)

H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Inst. of Physics Publishing 2001), Chap. 2.

K. Wu, M. C. Li, J. C. Wyant, N. J. Brock, B. Kimbrough, and C. C. Lee, “Optical admittance monitor through a dynamic interferometer,” Optical Interference Coating, USA TuC5 (2010).

K. Wu, Research on optical monitor through optical admittance analysis and dynamic interferometry, Ph. D. Dissertation, (Department of Optics and Photonics, National Central University 2005), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Multilayer thin films.

Fig. 2
Fig. 2

Admittance and transmittance loci of two quarter wave layers.

Fig. 3
Fig. 3

Equivalent optical admittance loci of a quarter-wave stack (ns = 1.52, nH = 2.18, nL = 1.46).

Fig. 4
Fig. 4

Optical thickness phase distribution on the optical admittance loci.

Fig. 5
Fig. 5

Phase shifting technique for the optical admittance to increase monitoring sensitivity (1 dot/ nm).

Fig. 6
Fig. 6

Admittance loci of the AR coating in 510nm.

Fig. 7
Fig. 7

Comparison between two optical admittance monitoring.

Fig. 8
Fig. 8

Spectra of the AR coatings fabricated with various monitor methods.

Fig. 9
Fig. 9

Spectra of the AR coatings with 20% thickness excess in the 2nd layer fabricated with various monitoring methods.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[ B C ]=[ E a E k H a E k ]= j=1 m [ cos δ j i y j sin δ j i y j sin δ j cos δ j ] [ 1 H k E k ]= j=1 m [ cos δ j i y j sin δ j i y j sin δ j cos δ j ] [ 1 y s ]= j=1 m [ cos δ j i n j y v sin δ j i n j y v sin δ j cos δ j ] [ 1 n s y v ]
y E = H a E a = C B
T= 4 n 0 y V n s ( n 0 y V B+C) ( n 0 y V B+C) * R=( n 0 y V BC n 0 y V B+C ) ( n 0 y V BC n 0 y V B+C ) *
M= i [ T measured ( λ i ) T cal ( n j ( λ i ), d j , λ i )] 2
r e iδr = y 0 y E y 0 + y E

Metrics