Abstract

Heavily doped n-type Ge and GeSn are investigated as plasmonic conductors for integration with undoped dielectrics of Si, SiGe, Ge, and GeSn in order to create a foundry-based group IV plasmonics technology. N-type Ge1-xSnx with compositions of 0 ≤ x ≤ 0.115 are investigated utilizing effective-mass theory and Drude considerations. The plasma wavelengths, relaxation times, and complex permittivities are determined as functions of the free carrier concentration over the range of 1019 to 1021 cm−3. Basic plasmonic properties such as propagation loss and mode height are calculated and example numerical simulations are shown of a dielectric-conductor-dielectric ribbon waveguide structure are shown. Practical operation in the 2 to 20 μm wavelength range is predicted.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306, 767306-11 (2010).
    [CrossRef]
  2. A. M. Crook, H. P. Nair, D. A. Ferrer, and S. R. Bank, “Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures,” Appl. Phys. Lett. 99(7), 072120 (2011).
    [CrossRef]
  3. D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-infrared wavelengths,” Opt. Express 19(15), 14594–14603 (2011).
    [CrossRef] [PubMed]
  4. M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” submitted to J. Appl. Phys. (2011).
  5. J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
    [CrossRef]
  6. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
    [CrossRef] [PubMed]
  7. J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730–734 (2010).
    [CrossRef]
  8. G. Sun, R. A. Soref, and H. H. Cheng, “Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode,” Opt. Express 18(19), 19957–19965 (2010).
    [CrossRef] [PubMed]
  9. S. Y. Cho and R. A. Soref, “Low-loss silicide/silicon plasmonic ribbon waveguides for mid- and far-infrared applications,” Opt. Lett. 34(12), 1759–1761 (2009).
    [CrossRef] [PubMed]
  10. R. Ragan and H. A. Atwater, “Measurement of the direct energy gap of coherently strained SnxGe1-x/Ge(001) heterostructures,” Appl. Phys. Lett. 77(21), 3418–3420 (2000).
    [CrossRef]
  11. V. R. D’Costa, J. Tolle, J. Xie, J. Menendez, and J. Kouvetakis, “Transport properties of doped GeSn alloys,” 2008 29th Int. Conf. on the Physics of Semiconductors (AIP, Rio de Janeiro, 2008).
  12. A. V. G. Chizmeshya, C. Ritter, J. Tolle, C. Cook, J. Menendez, and J. Kouvetakis, “Fundamental studies of P(GeH3)3, and Sb(GeH3)3: practical n-dopants for new group IV semiconductors,” Chem. Mater. 18(26), 6266–6277 (2006).
    [CrossRef]
  13. V. R. D’Costa, J. Tolle, J. Xie, J. Kouvetakis, and J. Menendez, “Infrared dielectric function of p-type Ge0.98 Sn0.02 alloys,” Phys. Rev. B 80(12), 125209 (2009).
    [CrossRef]
  14. B. Van Zeghbroeck, “Detailed description of the effective mass,” in Principles of Semiconductor Devise, http://ece-www.colorado.edu/~bart/book/ (2004).
  15. V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L- telecommunications bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
    [CrossRef]
  16. J. Xie, J. Tolle, V. R. D’Costa, C. Weng, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular approaches to p- and n- nanoscale doping of Ge1-ySny semiconductors: Structural, electrical and transport properties,” Solid-State Electron. 53(8), 816–823 (2009).
    [CrossRef]
  17. C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron. 20(2), 77–89 (1977).
    [CrossRef]
  18. R. Soref, S.-Y. Cho, W. Buchwald, R. E. Peale, and J. Cleary, “Silicon plasmonic waveguides,” in Silicon Photonics for Telecommunications and Biomedical Applications, S. Fathpour and B. Jalali, eds. (Taylor and Francis, UK, 2011).
  19. S. T. Lim, C. E. Png, E. A. Ong, and Y. L. Ang, “Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,” Opt. Express 15(18), 11061–11072 (2007).
    [CrossRef] [PubMed]

2011 (3)

A. M. Crook, H. P. Nair, D. A. Ferrer, and S. R. Bank, “Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures,” Appl. Phys. Lett. 99(7), 072120 (2011).
[CrossRef]

D. Li and C. Z. Ning, “All-semiconductor active plasmonic system in mid-infrared wavelengths,” Opt. Express 19(15), 14594–14603 (2011).
[CrossRef] [PubMed]

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

2010 (3)

2009 (4)

V. R. D’Costa, J. Tolle, J. Xie, J. Kouvetakis, and J. Menendez, “Infrared dielectric function of p-type Ge0.98 Sn0.02 alloys,” Phys. Rev. B 80(12), 125209 (2009).
[CrossRef]

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L- telecommunications bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[CrossRef]

J. Xie, J. Tolle, V. R. D’Costa, C. Weng, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular approaches to p- and n- nanoscale doping of Ge1-ySny semiconductors: Structural, electrical and transport properties,” Solid-State Electron. 53(8), 816–823 (2009).
[CrossRef]

S. Y. Cho and R. A. Soref, “Low-loss silicide/silicon plasmonic ribbon waveguides for mid- and far-infrared applications,” Opt. Lett. 34(12), 1759–1761 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (1)

A. V. G. Chizmeshya, C. Ritter, J. Tolle, C. Cook, J. Menendez, and J. Kouvetakis, “Fundamental studies of P(GeH3)3, and Sb(GeH3)3: practical n-dopants for new group IV semiconductors,” Chem. Mater. 18(26), 6266–6277 (2006).
[CrossRef]

2000 (1)

R. Ragan and H. A. Atwater, “Measurement of the direct energy gap of coherently strained SnxGe1-x/Ge(001) heterostructures,” Appl. Phys. Lett. 77(21), 3418–3420 (2000).
[CrossRef]

1977 (1)

C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron. 20(2), 77–89 (1977).
[CrossRef]

Alberigi Quaranta, A.

C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron. 20(2), 77–89 (1977).
[CrossRef]

Ang, Y. L.

Atwater, H. A.

R. Ragan and H. A. Atwater, “Measurement of the direct energy gap of coherently strained SnxGe1-x/Ge(001) heterostructures,” Appl. Phys. Lett. 77(21), 3418–3420 (2000).
[CrossRef]

Bank, S. R.

A. M. Crook, H. P. Nair, D. A. Ferrer, and S. R. Bank, “Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures,” Appl. Phys. Lett. 99(7), 072120 (2011).
[CrossRef]

Boreman, G. D.

Buchwald, W.

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306, 767306-11 (2010).
[CrossRef]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
[CrossRef] [PubMed]

Buchwald, W. R.

Canali, C.

C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron. 20(2), 77–89 (1977).
[CrossRef]

Cheng, H. H.

Chizmeshya, A. V. G.

J. Xie, J. Tolle, V. R. D’Costa, C. Weng, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular approaches to p- and n- nanoscale doping of Ge1-ySny semiconductors: Structural, electrical and transport properties,” Solid-State Electron. 53(8), 816–823 (2009).
[CrossRef]

A. V. G. Chizmeshya, C. Ritter, J. Tolle, C. Cook, J. Menendez, and J. Kouvetakis, “Fundamental studies of P(GeH3)3, and Sb(GeH3)3: practical n-dopants for new group IV semiconductors,” Chem. Mater. 18(26), 6266–6277 (2006).
[CrossRef]

Cho, S. Y.

Cleary, J. W.

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730–734 (2010).
[CrossRef]

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306, 767306-11 (2010).
[CrossRef]

Cook, C.

A. V. G. Chizmeshya, C. Ritter, J. Tolle, C. Cook, J. Menendez, and J. Kouvetakis, “Fundamental studies of P(GeH3)3, and Sb(GeH3)3: practical n-dopants for new group IV semiconductors,” Chem. Mater. 18(26), 6266–6277 (2006).
[CrossRef]

Crook, A. M.

A. M. Crook, H. P. Nair, D. A. Ferrer, and S. R. Bank, “Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures,” Appl. Phys. Lett. 99(7), 072120 (2011).
[CrossRef]

D’Costa, V. R.

V. R. D’Costa, J. Tolle, J. Xie, J. Kouvetakis, and J. Menendez, “Infrared dielectric function of p-type Ge0.98 Sn0.02 alloys,” Phys. Rev. B 80(12), 125209 (2009).
[CrossRef]

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L- telecommunications bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[CrossRef]

J. Xie, J. Tolle, V. R. D’Costa, C. Weng, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular approaches to p- and n- nanoscale doping of Ge1-ySny semiconductors: Structural, electrical and transport properties,” Solid-State Electron. 53(8), 816–823 (2009).
[CrossRef]

Davids, P. S.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

Drehman, A.

Edwards, O.

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306, 767306-11 (2010).
[CrossRef]

Fang, Y.

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L- telecommunications bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[CrossRef]

Ferrer, D. A.

A. M. Crook, H. P. Nair, D. A. Ferrer, and S. R. Bank, “Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures,” Appl. Phys. Lett. 99(7), 072120 (2011).
[CrossRef]

Ginn, J. C.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

Ishigami, M.

Jacoboni, C.

C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron. 20(2), 77–89 (1977).
[CrossRef]

Jarecki, R. L.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

Kouvetakis, J.

J. Xie, J. Tolle, V. R. D’Costa, C. Weng, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular approaches to p- and n- nanoscale doping of Ge1-ySny semiconductors: Structural, electrical and transport properties,” Solid-State Electron. 53(8), 816–823 (2009).
[CrossRef]

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L- telecommunications bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[CrossRef]

V. R. D’Costa, J. Tolle, J. Xie, J. Kouvetakis, and J. Menendez, “Infrared dielectric function of p-type Ge0.98 Sn0.02 alloys,” Phys. Rev. B 80(12), 125209 (2009).
[CrossRef]

A. V. G. Chizmeshya, C. Ritter, J. Tolle, C. Cook, J. Menendez, and J. Kouvetakis, “Fundamental studies of P(GeH3)3, and Sb(GeH3)3: practical n-dopants for new group IV semiconductors,” Chem. Mater. 18(26), 6266–6277 (2006).
[CrossRef]

Li, D.

Lim, S. T.

Mathews, J.

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L- telecommunications bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[CrossRef]

Medhi, G.

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306, 767306-11 (2010).
[CrossRef]

Menendez, J.

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L- telecommunications bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[CrossRef]

V. R. D’Costa, J. Tolle, J. Xie, J. Kouvetakis, and J. Menendez, “Infrared dielectric function of p-type Ge0.98 Sn0.02 alloys,” Phys. Rev. B 80(12), 125209 (2009).
[CrossRef]

J. Xie, J. Tolle, V. R. D’Costa, C. Weng, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular approaches to p- and n- nanoscale doping of Ge1-ySny semiconductors: Structural, electrical and transport properties,” Solid-State Electron. 53(8), 816–823 (2009).
[CrossRef]

A. V. G. Chizmeshya, C. Ritter, J. Tolle, C. Cook, J. Menendez, and J. Kouvetakis, “Fundamental studies of P(GeH3)3, and Sb(GeH3)3: practical n-dopants for new group IV semiconductors,” Chem. Mater. 18(26), 6266–6277 (2006).
[CrossRef]

Nair, H. P.

A. M. Crook, H. P. Nair, D. A. Ferrer, and S. R. Bank, “Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures,” Appl. Phys. Lett. 99(7), 072120 (2011).
[CrossRef]

Ning, C. Z.

Oladeji, I.

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306, 767306-11 (2010).
[CrossRef]

Ong, E. A.

Ottaviani, G.

C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron. 20(2), 77–89 (1977).
[CrossRef]

Peale, R. E.

Png, C. E.

Ragan, R.

R. Ragan and H. A. Atwater, “Measurement of the direct energy gap of coherently strained SnxGe1-x/Ge(001) heterostructures,” Appl. Phys. Lett. 77(21), 3418–3420 (2000).
[CrossRef]

Ritter, C.

A. V. G. Chizmeshya, C. Ritter, J. Tolle, C. Cook, J. Menendez, and J. Kouvetakis, “Fundamental studies of P(GeH3)3, and Sb(GeH3)3: practical n-dopants for new group IV semiconductors,” Chem. Mater. 18(26), 6266–6277 (2006).
[CrossRef]

Roucka, R.

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L- telecommunications bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[CrossRef]

Shaner, E. A.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

Shelton, D. J.

Smith, C. W.

Soref, R.

Soref, R. A.

Sun, G.

Tolle, J.

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L- telecommunications bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[CrossRef]

J. Xie, J. Tolle, V. R. D’Costa, C. Weng, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular approaches to p- and n- nanoscale doping of Ge1-ySny semiconductors: Structural, electrical and transport properties,” Solid-State Electron. 53(8), 816–823 (2009).
[CrossRef]

V. R. D’Costa, J. Tolle, J. Xie, J. Kouvetakis, and J. Menendez, “Infrared dielectric function of p-type Ge0.98 Sn0.02 alloys,” Phys. Rev. B 80(12), 125209 (2009).
[CrossRef]

A. V. G. Chizmeshya, C. Ritter, J. Tolle, C. Cook, J. Menendez, and J. Kouvetakis, “Fundamental studies of P(GeH3)3, and Sb(GeH3)3: practical n-dopants for new group IV semiconductors,” Chem. Mater. 18(26), 6266–6277 (2006).
[CrossRef]

Weng, C.

J. Xie, J. Tolle, V. R. D’Costa, C. Weng, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular approaches to p- and n- nanoscale doping of Ge1-ySny semiconductors: Structural, electrical and transport properties,” Solid-State Electron. 53(8), 816–823 (2009).
[CrossRef]

Xie, J.

V. R. D’Costa, J. Tolle, J. Xie, J. Kouvetakis, and J. Menendez, “Infrared dielectric function of p-type Ge0.98 Sn0.02 alloys,” Phys. Rev. B 80(12), 125209 (2009).
[CrossRef]

J. Xie, J. Tolle, V. R. D’Costa, C. Weng, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular approaches to p- and n- nanoscale doping of Ge1-ySny semiconductors: Structural, electrical and transport properties,” Solid-State Electron. 53(8), 816–823 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

A. M. Crook, H. P. Nair, D. A. Ferrer, and S. R. Bank, “Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures,” Appl. Phys. Lett. 99(7), 072120 (2011).
[CrossRef]

R. Ragan and H. A. Atwater, “Measurement of the direct energy gap of coherently strained SnxGe1-x/Ge(001) heterostructures,” Appl. Phys. Lett. 77(21), 3418–3420 (2000).
[CrossRef]

Chem. Mater. (1)

A. V. G. Chizmeshya, C. Ritter, J. Tolle, C. Cook, J. Menendez, and J. Kouvetakis, “Fundamental studies of P(GeH3)3, and Sb(GeH3)3: practical n-dopants for new group IV semiconductors,” Chem. Mater. 18(26), 6266–6277 (2006).
[CrossRef]

J. Appl. Phys. (1)

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

V. R. D’Costa, J. Tolle, J. Xie, J. Kouvetakis, and J. Menendez, “Infrared dielectric function of p-type Ge0.98 Sn0.02 alloys,” Phys. Rev. B 80(12), 125209 (2009).
[CrossRef]

Proc. SPIE (1)

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306, 767306-11 (2010).
[CrossRef]

Semicond. Sci. Technol. (1)

V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L- telecommunications bands,” Semicond. Sci. Technol. 24(11), 115006 (2009).
[CrossRef]

Solid-State Electron. (2)

J. Xie, J. Tolle, V. R. D’Costa, C. Weng, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular approaches to p- and n- nanoscale doping of Ge1-ySny semiconductors: Structural, electrical and transport properties,” Solid-State Electron. 53(8), 816–823 (2009).
[CrossRef]

C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron. 20(2), 77–89 (1977).
[CrossRef]

Other (4)

R. Soref, S.-Y. Cho, W. Buchwald, R. E. Peale, and J. Cleary, “Silicon plasmonic waveguides,” in Silicon Photonics for Telecommunications and Biomedical Applications, S. Fathpour and B. Jalali, eds. (Taylor and Francis, UK, 2011).

B. Van Zeghbroeck, “Detailed description of the effective mass,” in Principles of Semiconductor Devise, http://ece-www.colorado.edu/~bart/book/ (2004).

V. R. D’Costa, J. Tolle, J. Xie, J. Menendez, and J. Kouvetakis, “Transport properties of doped GeSn alloys,” 2008 29th Int. Conf. on the Physics of Semiconductors (AIP, Rio de Janeiro, 2008).

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” submitted to J. Appl. Phys. (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Examples of a CD (a) and DCD (b) waveguide configuration. The conductor is heavily doped Ge or GeSn while the dielectric is undoped Ge or GeSn.

Fig. 2
Fig. 2

Plasma wavelengths for n-Ge1-xSnx, n-Ge and n-Si as a function of carrier concentration.

Fig. 3
Fig. 3

Real (left) and imaginary parts (right) of the permittivity of n-Ge1-xSnx, n-Ge and n-Si. The carrier concentrations from top to bottom are 1019, 1020 and 1021 cm−3.

Fig. 4
Fig. 4

Plasmon intensity propagation loss (left) and plasmon mode height (right) n-Ge1-xSnx, n-Ge and n-Si. The dielectric region is undoped Ge1-xSnx, Ge and Si respectively. The carrier concentrations from top to bottom are 1019, 1020 and 1021 cm−3.

Fig. 5
Fig. 5

DCD ribbon modes found by FDTD software. The waveguide was lossy Ge utilizing the software material library. The ribbon is Ge0.94Sn0.06 with N = 1021 cm−3. The free space wavelength is 8 μm. The ribbon is 80nm thick and 8 μm wide while the waveguide is 1.6 μm high and 16 μm wide. Shown are X-Y cross sections of Ey at 1, 4, 10, and 16 μm from the source from left to right respectively.

Tables (3)

Tables Icon

Table 1 Direct-Gap Mass Considerations for Ge1-xSnx.

Tables Icon

Table 2 Conductivity Effective Mass Considerations for Ge1-xSnx.

Tables Icon

Table 3 High frequency dielectric constant, plasmon resonance wavelength, and relaxation time for Ge1-xSnx at three different n-type doping concentrations in units of cm−3. λp and τ are in units of μm and fs respectively. n-Si values are shown for comparison.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ε = ε [ 1 ω p 2 τ 2 1+ ω 2 τ 2 ],
ε = ε ω p 2 τ ω(1+ ω 2 τ 2 ) ,
ω p = 2πc λ p = N e 2 m c ε ε o ,
τ= μ m c e ,
m o m Γ =1+ 4p 3 + 2p 3 ( E g ( x ) E g ( x )+Δ ),
p= 12.6eV E g ( x ) [ a( Ge ) a( x ) ] 2 ,
a(x)=5.6575( 1x )+6.489x+0.166x( 1x ),
1 m c = f L m L + f Γ m Γ .
ε limω0 = ε [ 1 ω p 2 τ 2 ]= ε [ 1 N μ 2 m c ε ε o ],
L d,c = [ ω c Re ε 2 d,c ε d + ε c ] 1 ,
L z =8.68[ dB ][ ω c Im ε d ε c ε d + ε c ].

Metrics