Abstract

We study the interaction of an incident plane wave with a metamaterial periodic structure consisting of alternating layers of positive and negative refractive index with average zero refractive index. We show that the existence of very narrow resonance peaks for which giant absorption - 50% at layer thickness of 1% of the incident wavelength - is exhibited. Maximum absorption is obtained at a specific layer thickness satisfying the critical coupling condition. This phenomenon is explained by the Rayleigh anomaly and by the excitation of Fabry Perot modes in the periodic layer. In addition, we investigate the modes supported by the structures for several limiting cases, and show that zero phase accumulation in the periodic metamaterial is obtained at resonance.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Engheta and R. Ziolkowski, Metamaterials: Physics and Engineering Explorations, (Wiley, 2006).
  2. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509 (1968).
    [CrossRef]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [CrossRef] [PubMed]
  5. S. Nefedov and S. A. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002).
    [CrossRef]
  6. J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003).
    [CrossRef] [PubMed]
  7. L. Wu, S. He, and L. F. Shen, “Band structure for a one-dimensional photonic crystal containing left-handed materials,” Phys. Rev. B 67, 235103 (2003).
    [CrossRef]
  8. A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
    [CrossRef]
  9. D. R. Fredkin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753–1755 (2002).
    [CrossRef]
  10. Y. Yuan, L. Ran, J. Huangfu, H. Chen, L. Shen, and J. A. Kong, “Experimental verification of zero order bandgap in a layered stack of left-handed and right-handed materials,” Opt. Express 14, 2220–2227 (2006).
    [CrossRef] [PubMed]
  11. S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
    [CrossRef] [PubMed]
  12. Y. Jin, S. Xiao, N. A. Mortensen, and S. He, “Arbitrarily thin metamaterial structure for perfect absorption and giant magnification,” Opt. Express 19, 11114–11119 (2011).
    [CrossRef] [PubMed]
  13. L. Wu, S. He, and L. Chen, “On unusual narrow transmission bands for a multi-layered periodic structure containing left-handed materials,” Opt. Express 11, 1283–1290 (2003).
    [CrossRef] [PubMed]
  14. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  15. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [CrossRef]
  16. P. Lalanne and G. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
    [CrossRef]
  17. T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates,” J. Opt. Soc. Am. A 28, 238–244 (2011).
    [CrossRef]
  18. P. Yeh, Optical waves in layered media, (John Wiley & Sons, New York, 1988).
  19. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
    [CrossRef]
  20. A. Hessel and A. A. Oliner, “A new theory of Wood anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
    [CrossRef]
  21. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [CrossRef]
  22. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
    [CrossRef]
  23. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red-shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
    [CrossRef]
  24. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
    [CrossRef]
  25. S. M. Norton, T. Erdogan, and G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A 14, 629–639 (1997).
    [CrossRef]
  26. V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express 17(24), 21897–21909 (2009).
    [CrossRef] [PubMed]
  27. R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
    [CrossRef]
  28. S. A. Darmanyan, M. Neviere, and A. A. Zakhidov, “Surface modes at the interface of conventional and left-handed media,” Opt. Commun. 225, 233–240 (2003).
    [CrossRef]
  29. N. M. Litchinitser, A. I. Maimistov, I. R. Gabitov, R. Z. Sagdeev, and V. M. Shalaev, “Metamaterials: electromagnetic enhancement at zero-index transition,” Opt. Lett. 33, 2350–2352 (2008).
    [CrossRef] [PubMed]
  30. H. A. Haus, Waves and fields in Optoelectronics, (New Jersey, Prentice-Hall Inc., 1984).
  31. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 4, 321–322 (2000).
    [CrossRef]
  32. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer-Verlag, New York, 1988).
  33. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
    [CrossRef]

2011 (2)

2009 (3)

V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express 17(24), 21897–21909 (2009).
[CrossRef] [PubMed]

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[CrossRef]

2008 (1)

2006 (1)

2003 (8)

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
[CrossRef]

L. Wu, S. He, and L. Chen, “On unusual narrow transmission bands for a multi-layered periodic structure containing left-handed materials,” Opt. Express 11, 1283–1290 (2003).
[CrossRef] [PubMed]

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red-shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[CrossRef]

S. A. Darmanyan, M. Neviere, and A. A. Zakhidov, “Surface modes at the interface of conventional and left-handed media,” Opt. Commun. 225, 233–240 (2003).
[CrossRef]

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003).
[CrossRef] [PubMed]

L. Wu, S. He, and L. F. Shen, “Band structure for a one-dimensional photonic crystal containing left-handed materials,” Phys. Rev. B 67, 235103 (2003).
[CrossRef]

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

2002 (2)

D. R. Fredkin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753–1755 (2002).
[CrossRef]

S. Nefedov and S. A. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002).
[CrossRef]

2001 (1)

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
[CrossRef]

2000 (3)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 4, 321–322 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

1997 (2)

1996 (2)

1995 (1)

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

1965 (1)

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Alu, A.

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

Chan, C. T.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003).
[CrossRef] [PubMed]

Chatterjee, R.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

Chen, H.

Chen, L.

Darmanyan, S. A.

S. A. Darmanyan, M. Neviere, and A. A. Zakhidov, “Surface modes at the interface of conventional and left-handed media,” Opt. Commun. 225, 233–240 (2003).
[CrossRef]

Engheta, N.

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

N. Engheta and R. Ziolkowski, Metamaterials: Physics and Engineering Explorations, (Wiley, 2006).

Erdogan, T.

Fan, S.

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Fredkin, D. R.

D. R. Fredkin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753–1755 (2002).
[CrossRef]

Friesem, A. A.

Gabitov, I. R.

Gaylord, T. K.

Genet, C.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red-shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[CrossRef]

Giessen, H.

Gippius, N. A.

Granet, G.

Grann, E. B.

Haus, H. A.

H. A. Haus, Waves and fields in Optoelectronics, (New Jersey, Prentice-Hall Inc., 1984).

He, S.

Hessel, A.

Huangfu, J.

Jin, Y.

Joannopoulos, J. D.

Kocabas, S. E.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[CrossRef]

Kocaman, S.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

Kong, J. A.

Kwong, D. L.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

Lalanne, P.

Li, J.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003).
[CrossRef] [PubMed]

Li, L.

Litchinitser, N. M.

Liu, V.

Maimistov, A. I.

McMillan, J. F.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

Miller, D. A. B.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[CrossRef]

Moharam, M. G.

Morris, G.

Morris, G. M.

Mortensen, N. A.

Nefedov, S.

S. Nefedov and S. A. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Neviere, M.

S. A. Darmanyan, M. Neviere, and A. A. Zakhidov, “Surface modes at the interface of conventional and left-handed media,” Opt. Commun. 225, 233–240 (2003).
[CrossRef]

Norton, S. M.

Oliner, A. A.

Osgood, R. M.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Panoiu, N. C.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Pommet, D. A.

Povinelli, M.

Raether, H.

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer-Verlag, New York, 1988).

Ran, L.

Ron, A.

D. R. Fredkin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753–1755 (2002).
[CrossRef]

Rosenblatt, D.

Ruppin, R.

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
[CrossRef]

Sagdeev, R. Z.

Sarrazin, M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Shalaev, V. M.

Sharon, A.

Shen, L.

Shen, L. F.

L. Wu, S. He, and L. F. Shen, “Band structure for a one-dimensional photonic crystal containing left-handed materials,” Phys. Rev. B 67, 235103 (2003).
[CrossRef]

Sheng, P.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Suh, W.

Tikhodeev, S. G.

Tretyakov, S. A.

S. Nefedov and S. A. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002).
[CrossRef]

van Exter, M. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red-shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[CrossRef]

Veronis, G.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Vigneron, J.-P.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Vigoureux, J.-M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Weiss, T.

Woerdman, J. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red-shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[CrossRef]

Wong, C. W.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

Wu, L.

L. Wu, S. He, and L. Chen, “On unusual narrow transmission bands for a multi-layered periodic structure containing left-handed materials,” Opt. Express 11, 1283–1290 (2003).
[CrossRef] [PubMed]

L. Wu, S. He, and L. F. Shen, “Band structure for a one-dimensional photonic crystal containing left-handed materials,” Phys. Rev. B 67, 235103 (2003).
[CrossRef]

Xiao, S.

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 4, 321–322 (2000).
[CrossRef]

Yeh, P.

P. Yeh, Optical waves in layered media, (John Wiley & Sons, New York, 1988).

Yu, M. B.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

Yuan, Y.

Zakhidov, A. A.

S. A. Darmanyan, M. Neviere, and A. A. Zakhidov, “Surface modes at the interface of conventional and left-handed media,” Opt. Commun. 225, 233–240 (2003).
[CrossRef]

Zhou, L.

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003).
[CrossRef] [PubMed]

Ziolkowski, R.

N. Engheta and R. Ziolkowski, Metamaterials: Physics and Engineering Explorations, (Wiley, 2006).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. R. Fredkin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753–1755 (2002).
[CrossRef]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 4, 321–322 (2000).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

J. Opt. Soc. Am. A (7)

J. Phys. Condens. Matter (1)

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
[CrossRef]

Opt. Commun. (2)

S. A. Darmanyan, M. Neviere, and A. A. Zakhidov, “Surface modes at the interface of conventional and left-handed media,” Opt. Commun. 225, 233–240 (2003).
[CrossRef]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red-shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (3)

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[CrossRef]

L. Wu, S. He, and L. F. Shen, “Band structure for a one-dimensional photonic crystal containing left-handed materials,” Phys. Rev. B 67, 235103 (2003).
[CrossRef]

Phys. Rev. E (1)

S. Nefedov and S. A. Tretyakov, “Photonic band gap structure containing metamaterial with negative permittivity and permeability,” Phys. Rev. E 66, 036611 (2002).
[CrossRef]

Phys. Rev. Lett. (4)

J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Other (4)

N. Engheta and R. Ziolkowski, Metamaterials: Physics and Engineering Explorations, (Wiley, 2006).

P. Yeh, Optical waves in layered media, (John Wiley & Sons, New York, 1988).

H. A. Haus, Waves and fields in Optoelectronics, (New Jersey, Prentice-Hall Inc., 1984).

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer-Verlag, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Figure 1
Figure 1

Schematic drawing showing a unit cell of the DPS-DNG periodic structure

Figure 2
Figure 2

The log(Re(KB)) as function of the real and imaginary parts of kZ /k0, calculated using TMM. (b) Magnetic power |Hy|2 in a unit cell (media boundary at x/λ0 = 0), for the modes with kz/k0 ≊ ±0.83 − 0.46i (c) Phase of Hy in a unit cell for the same mode as (b). (d) Eigenmodes of the same structure as (a), calculated using RCWA.

Figure 3
Figure 3

RCWA calculation of: (a) Transmission (b) Reflection and (c) Absorption curves as function of the incident wavelength and slab thickness.

Figure 4
Figure 4

Real part of the field profiles in the NIM grating, calculated using the RCWA method (a) Hy field component at resonance (λ = L), (b) Ez field component at resonance (λ = L) (saturated color scale) (c) Hy field for the off-resonance case (λ = 1.001L). The black rectangles denote the region of the DNG layer.

Figure 5
Figure 5

Phase index (blue line, left y-axis) and absorption (green line, right y-axis) as function of ωω0 normalized by 2πc, calculated for h = 0.01L. The correspondence between the absorption peak and the zero phase index is marked by the crossing of the dashed lines.

Figure 6
Figure 6

Absorption as function of the periodic layer thickness, calculated for λ = (1 + 6 × 10−7)L. (a) is an inset of (b), showing a magnified view of the absorption around the absorption peak (h ≈ 0.01L).

Figure 7
Figure 7

(a) Reflection and (b) Transmission power intensities as function of the incident frequency normalized by 2πc. The red curve is the RCWA simulation result, while the blue curve is the Fano fit based on TCMT model.

Figure 8
Figure 8

RCWA calculation of: (a) Transmission (b) Reflection and (c) Absorption as a function of λλ0 and the normalized slab thickness. Calculation is made assuming a Drude dispersive model of the DNG medium.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

cos ( k x 1 L 1 ) cos ( n ˜ k x 1 L 2 ) n 2 + ɛ 2 2 n ˜ ɛ sin ( k x 1 L 1 ) sin ( n ˜ k x 1 L 2 ) = cos ( K B L )

Metrics