Abstract

We present systematic experimental investigations on the effects of laser polarization and interface orientation in second and third harmonic generation microscopy. We find that the laser polarization has no measurable effect on signal strength and resolution in third harmonic microscopy, while the second harmonic strongly depends upon the polarization direction of the driving laser. Moreover, we observe a strong effect of the interface orientation with respect to the laser beam direction—both in second and third harmonic generation. This affects the signal strength, as well as the obtained transversal and longitudinal resolution in microscopic imaging. As an (on the first glance) surprising feature, also surfaces parallel to the optical axis of the laser beam yield strong harmonic signal. This enables applications of harmonic microscopy in specific geometries. As an example we monitor the flow of immiscible microfluids in lateral cut by third harmonic microscopy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [CrossRef]
  2. Y.-Y. Tzeng, Z.-Y. Zhuo, M.-Y. Lee, C.-S. Liao, P.-C. Wu, C.-J. Huang, M.-C. Chan, T.-M. Liu, Y.-Y. Lin, and S.-W. Chu, “Observation of spontaneous polarization misalignments in periodically poled crystals using second-harmonic generation microscopy,” Opt. Express 19(12), 11106–11113 (2011).
    [CrossRef] [PubMed]
  3. F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
    [CrossRef] [PubMed]
  4. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  5. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
    [CrossRef] [PubMed]
  6. R. Hellwarth and P. Christensen, “Nonlinear optical microscope using second harmonic generation,” Appl. Opt. 14(2), 247–248 (1975).
    [CrossRef] [PubMed]
  7. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
    [CrossRef]
  8. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982).
    [CrossRef] [PubMed]
  9. D. Schafer, M. Müller, M. Bonn, D. W. M. Marr, J. van Maarseveen, and J. Squier, “Coherent anti-Stokes Raman scattering microscopy for quantitative characterization of mixing and flow in microfluidics,” Opt. Lett. 34(2), 211–213 (2009).
    [CrossRef] [PubMed]
  10. J. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
    [CrossRef] [PubMed]
  11. R. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).
  12. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5(8), 169–175 (1999).
    [CrossRef] [PubMed]
  13. N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
    [CrossRef] [PubMed]
  14. N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
    [CrossRef] [PubMed]
  15. O. Schwartz and D. Oron, “Background-free third harmonic imaging of gold nanorods,” Nano Lett. 9(12), 4093–4097 (2009).
    [CrossRef] [PubMed]
  16. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
    [CrossRef] [PubMed]
  17. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Control and measurement of spatially inhomogeneous polarization distributions in third-harmonic generation microscopy,” Opt. Lett. 34(7), 1090–1092 (2009).
    [CrossRef] [PubMed]
  18. N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express 16(19), 14703–14715 (2008).
    [CrossRef] [PubMed]
  19. J.-X. Cheng and X. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19(7), 1604–1610 (2002).
    [CrossRef]
  20. R. Barille, L. Canioni, S. Rivet, L. Sarger, F. Brechet, P. Roy, and D. Pagnoux, “Nondestructive analysis of the transverse structure of novel optical fibers by third-harmonic-generation microscopy,” Opt. Lett. 27(16), 1391–1393 (2002).
    [CrossRef] [PubMed]
  21. U. Gubler and C. Bosshard, “Optical third-harmonic generation of fused silica in gas atmosphere: absolute value of the third-order nonlinear optical susceptibility χ(3),” Phys. Rev. B 61(16), 10702–10710 (2000).
    [CrossRef]
  22. F. J. Rodriguez, F. X. Wang, and M. Kauranen, “Calibration of the second-order nonlinear optical susceptibility of surface and bulk of glass,” Opt. Express 16(12), 8704–8710 (2008).
    [CrossRef] [PubMed]
  23. T. Hahn and S. Hardt, “Size-dependent detachment of DNA molecules from liquid–liquid interfaces,” Soft Matter 7(13), 6320 (2011).
    [CrossRef]
  24. P. He, D. Barthès-Biesel, and E. Leclerc, “Flow of two immiscible liquids with low viscosity in Y shaped microfluidic systems: effect of geometry,” Microfluid, Nanofluid. 9, 293–301 (2009).

2011

2010

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[CrossRef] [PubMed]

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

2009

O. Schwartz and D. Oron, “Background-free third harmonic imaging of gold nanorods,” Nano Lett. 9(12), 4093–4097 (2009).
[CrossRef] [PubMed]

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

P. He, D. Barthès-Biesel, and E. Leclerc, “Flow of two immiscible liquids with low viscosity in Y shaped microfluidic systems: effect of geometry,” Microfluid, Nanofluid. 9, 293–301 (2009).

D. Schafer, M. Müller, M. Bonn, D. W. M. Marr, J. van Maarseveen, and J. Squier, “Coherent anti-Stokes Raman scattering microscopy for quantitative characterization of mixing and flow in microfluidics,” Opt. Lett. 34(2), 211–213 (2009).
[CrossRef] [PubMed]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Control and measurement of spatially inhomogeneous polarization distributions in third-harmonic generation microscopy,” Opt. Lett. 34(7), 1090–1092 (2009).
[CrossRef] [PubMed]

2008

2004

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

2003

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

2002

2000

U. Gubler and C. Bosshard, “Optical third-harmonic generation of fused silica in gas atmosphere: absolute value of the third-order nonlinear optical susceptibility χ(3),” Phys. Rev. B 61(16), 10702–10710 (2000).
[CrossRef]

1999

1998

1997

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[CrossRef]

1982

1975

Aptel, F.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[CrossRef] [PubMed]

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[CrossRef]

Barille, R.

Bartels, R. A.

Barthès-Biesel, D.

P. He, D. Barthès-Biesel, and E. Leclerc, “Flow of two immiscible liquids with low viscosity in Y shaped microfluidic systems: effect of geometry,” Microfluid, Nanofluid. 9, 293–301 (2009).

Barzda, V.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Beaurepaire, E.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[CrossRef] [PubMed]

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express 16(19), 14703–14715 (2008).
[CrossRef] [PubMed]

Bonn, M.

Bosshard, C.

U. Gubler and C. Bosshard, “Optical third-harmonic generation of fused silica in gas atmosphere: absolute value of the third-order nonlinear optical susceptibility χ(3),” Phys. Rev. B 61(16), 10702–10710 (2000).
[CrossRef]

Bourgine, P.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Brakenhoff, G. J.

Brechet, F.

Canioni, L.

Carriles, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Chan, M.-C.

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

J.-X. Cheng and X. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19(7), 1604–1610 (2002).
[CrossRef]

Christensen, P.

Chu, S.-W.

Cisek, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Débarre, D.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Deniset-Besseau, A.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

Duloquin, L.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Duncan, M. D.

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[CrossRef]

Fachima, R.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

Faure, E.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Field, J. J.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Gubler, U.

U. Gubler and C. Bosshard, “Optical third-harmonic generation of fused silica in gas atmosphere: absolute value of the third-order nonlinear optical susceptibility χ(3),” Phys. Rev. B 61(16), 10702–10710 (2000).
[CrossRef]

Hahn, T.

T. Hahn and S. Hardt, “Size-dependent detachment of DNA molecules from liquid–liquid interfaces,” Soft Matter 7(13), 6320 (2011).
[CrossRef]

Hardt, S.

T. Hahn and S. Hardt, “Size-dependent detachment of DNA molecules from liquid–liquid interfaces,” Soft Matter 7(13), 6320 (2011).
[CrossRef]

He, P.

P. He, D. Barthès-Biesel, and E. Leclerc, “Flow of two immiscible liquids with low viscosity in Y shaped microfluidic systems: effect of geometry,” Microfluid, Nanofluid. 9, 293–301 (2009).

Hellwarth, R.

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[CrossRef]

Huang, C.-J.

Kauranen, M.

Leclerc, E.

P. He, D. Barthès-Biesel, and E. Leclerc, “Flow of two immiscible liquids with low viscosity in Y shaped microfluidic systems: effect of geometry,” Microfluid, Nanofluid. 9, 293–301 (2009).

Lee, M.-Y.

Legeais, J.-M.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

Liao, C.-S.

Lin, Y.-Y.

Liu, T.-M.

Luengo-Oroz, M. A.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Manuccia, T. J.

Marr, D. W. M.

Masihzadeh, O.

Müller, M.

Olivier, N.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[CrossRef] [PubMed]

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express 16(19), 14703–14715 (2008).
[CrossRef] [PubMed]

Oron, D.

O. Schwartz and D. Oron, “Background-free third harmonic imaging of gold nanorods,” Nano Lett. 9(12), 4093–4097 (2009).
[CrossRef] [PubMed]

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

Pagnoux, D.

Peyriéras, N.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Plamann, K.

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[CrossRef] [PubMed]

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

Raz, S.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

Reintjes, J.

Rivet, S.

Rodriguez, F. J.

Roy, P.

Santos, A.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Sarger, L.

Savy, T.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Schafer, D.

Schafer, D. N.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Schanne-Klein, M.-C.

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[CrossRef] [PubMed]

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

Schlup, P.

Schwartz, O.

O. Schwartz and D. Oron, “Background-free third harmonic imaging of gold nanorods,” Nano Lett. 9(12), 4093–4097 (2009).
[CrossRef] [PubMed]

Sheetz, K. E.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Silberberg, Y.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5(8), 169–175 (1999).
[CrossRef] [PubMed]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[CrossRef]

Solinas, X.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Squier, J.

Squier, J. A.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Sylvester, A. W.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Tal, E.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

Tzeng, Y.-Y.

van Maarseveen, J.

Veilleux, I.

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Wang, F. X.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Wilson, K. R.

Wu, P.-C.

Xie, X.

Xie, X. S.

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Yelin, D.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5(8), 169–175 (1999).
[CrossRef] [PubMed]

Zhuo, Z.-Y.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci. 51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Chem. B

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

J. Struct. Biol.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004).
[CrossRef] [PubMed]

Microfluid, Nanofluid.

P. He, D. Barthès-Biesel, and E. Leclerc, “Flow of two immiscible liquids with low viscosity in Y shaped microfluidic systems: effect of geometry,” Microfluid, Nanofluid. 9, 293–301 (2009).

Nano Lett.

O. Schwartz and D. Oron, “Background-free third harmonic imaging of gold nanorods,” Nano Lett. 9(12), 4093–4097 (2009).
[CrossRef] [PubMed]

Nat. Biotechnol.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

U. Gubler and C. Bosshard, “Optical third-harmonic generation of fused silica in gas atmosphere: absolute value of the third-order nonlinear optical susceptibility χ(3),” Phys. Rev. B 61(16), 10702–10710 (2000).
[CrossRef]

Rev. Sci. Instrum.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef] [PubMed]

Science

N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010).
[CrossRef] [PubMed]

Soft Matter

T. Hahn and S. Hardt, “Size-dependent detachment of DNA molecules from liquid–liquid interfaces,” Soft Matter 7(13), 6320 (2011).
[CrossRef]

Other

R. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).

Supplementary Material (2)

» Media 1: AVI (2106 KB)     
» Media 2: AVI (3409 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic setup of the nonlinear microscope and enlarged view of the detected volume (inset). In the experiment we take images around the inner part of the capillary, i.e. the cylindrical interface between the inner diameter and the index-matched fluid in the center. The large piece of bulk material further outside is of no interest here.

Fig. 2
Fig. 2

(right) Three-dimensional overview image of the capillary, measured by scanning THG microscopy. The orientation of the capillary is along the z-axis, i.e. the optical laser beam axis. A three-dimensional animation of the image is available at the online link Media 1. (left) Two-dimensional lateral cuts in the xy-plane of the image for horizontal or vertical laser polarization (indicated by orange arrows). We varied the polarization by a half-wave plate. The polarization direction at the sample is better defined than 100:1. Color coding along the capillary surface indicates the intensity of the THG signal. The signal scale is normalized to some arbitrary value of 1. The image consists of 1000 × 1000 data points.

Fig. 3
Fig. 3

(left) Two-dimensional contour plot, showing the difference signal of the two images for horizontal and vertical polarization from Fig. 2. Color coding along the capillary surface indicates the intensity of the THG difference signal. The image consists of 1000 × 1000 data points. (right) Relative change of the THG difference signal versus the angle φ along the capillary surface. Due to the intrinsic symmetry of the test object and image, we plot data for φ = -π/2 to φ = + π/2 only.

Fig. 4
Fig. 4

(left) Two-dimensional contour plot, showing the difference SHG signal of the two images for horizontal and vertical polarization. Color coding along the capillary surface indicates the intensity of the SHG difference signal. The image consists of 1000 × 1000 data points. An animation of the full three-dimensional SHG image (not depicted here) is available at the online link Media 2. (right) Relative change of the SHG difference signal versus the angle φ along the capillary surface. Due to the intrinsic symmetry of the test object and image, we plot data for φ = -π/2 to φ = +π/2 only. The slightly larger fluctuations of the relative SHG difference signal around φ = 0 are due to imperfections in data collection and division by very small absolute signal values.

Fig. 5
Fig. 5

THG microscopy of the capillary in lateral cut in the xz-plane. The orientation of the capillary is along the y-axis, i.e. perpendicular to the optical laser beam axis. The image consists of 920 × 1016 data points. Color coding along the capillary surface indicates the intensity of the THG signal in arbitrary units. The slightly larger intensities in positive x-direction are due to rather typical alignment variations in a mirror-scanning setup. On the upper and right side of the image we add traces of the THG intensity along horizontal and vertical pathways through the image (indicated by the yellow lines in the image).

Fig. 6
Fig. 6

THG microscopy of a microfluidic system of three liquids (PEG, Dextran and PEG) flowing in y-direction. The obtained resolution is 1 × 1 µm2. The underexposure in the corners of the microfluidic channels is due to shadowing of THG signal due to the channel geometry.

Metrics