Abstract

We propose and demonstrate a novel device structure of resonant cavity-enhanced photodetector (RCE-PD). The new RCE-PD structure consists of a bottom distributed Bragg reflector (DBR), a cavity with InGaAs multiple quantum wells (MQWs) for light absorption and a top mirror of sub-wavelength grating. By changing the fill factor of the 2-D grating, the effective cavity length of RCE-PDs can be varied so the resonant wavelength can be selected post growth. Accordingly, we can fabricate an array of PDs on a single chip, on which every PD aims for a specific wavelength.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
    [CrossRef]
  2. M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
    [CrossRef]
  3. J. P. Kim and A. M. Sarangan, “Simulation of resonant cavity enhanced (RCE) photodetectors using the finite difference time domain (FDTD) method,” Opt. Express 12(20), 4829–4834 (2004).
    [CrossRef] [PubMed]
  4. S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
    [CrossRef]
  5. E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
    [CrossRef]
  6. K. Lai and J. C. Campbell, “Design of a tunable GaAs/AlGaAs multiple-quantum-well resonant-cavity photodetector,” IEEE J. Quantum Electron. 30(1), 108–114 (1994).
    [CrossRef]
  7. Y. Shi, J. H. Zhao, J. Sarathy, H. Lee, and G. H. Olsen, “Tunable photodetectors based on strain compensated GaInAsSb/AlGaAsSb multiple quantum wells grown by molecular beam epitaxy,” IEEE Trans. Electron. Dev. 44(12), 2167–2173 (1997).
    [CrossRef]
  8. R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
    [CrossRef]
  9. S. Foland, K. H. Choi, and J. B. Lee, “Pressure-tunable guided-mode resonance sensor for single-wavelength characterization,” Opt. Lett. 35(23), 3871–3873 (2010).
    [CrossRef] [PubMed]
  10. Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16(18), 14221–14226 (2008).
    [CrossRef] [PubMed]
  11. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
    [CrossRef]
  12. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric layer diffraction gratings,” J. Opt. Soc. Am. A 7(8), 1470–1474 (1990).
    [CrossRef]
  13. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infared radiation,” J. Opt. Soc. Am. A 14(11), 2985–2993 (1997).
    [CrossRef]
  14. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
    [CrossRef]
  15. Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
    [CrossRef]
  16. M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency mid-infrared photodetector application,” J. Nanophoton. 5(1), 051824 (2011).
    [CrossRef]
  17. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
    [CrossRef] [PubMed]
  18. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33(13), 2695–2706 (1994).
    [CrossRef] [PubMed]
  19. S. Peng and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett. 21(8), 549–551 (1996).
    [CrossRef] [PubMed]
  20. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [CrossRef]
  21. M. S. Alam, M. S. Rahman, M. R. Islam, A. G. Bhuiyan, and M. Yamada, “Refractive index, absorption coefficient, and photoelastic constant: key parameters of InGaAs material relevant to InGaAs-based device performance,” in IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. IPRM '07 (IEEE, 2007), pp. 343–346.
  22. K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys. 73(1), 21–27 (1993).
    [CrossRef]
  23. S. C. Huang, T. H. Yang, C. P. Lee, and S. D. Lin, “Electrically driven integrated photonic crystal nanocavity coupled surface emitting laser,” Appl. Phys. Lett. 90(15), 151121 (2007).
    [CrossRef]

2011 (1)

M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency mid-infrared photodetector application,” J. Nanophoton. 5(1), 051824 (2011).
[CrossRef]

2010 (3)

2009 (1)

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

2008 (1)

2007 (1)

S. C. Huang, T. H. Yang, C. P. Lee, and S. D. Lin, “Electrically driven integrated photonic crystal nanocavity coupled surface emitting laser,” Appl. Phys. Lett. 90(15), 151121 (2007).
[CrossRef]

2005 (1)

R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[CrossRef]

2004 (2)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[CrossRef]

J. P. Kim and A. M. Sarangan, “Simulation of resonant cavity enhanced (RCE) photodetectors using the finite difference time domain (FDTD) method,” Opt. Express 12(20), 4829–4834 (2004).
[CrossRef] [PubMed]

1999 (1)

E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[CrossRef]

1997 (2)

Y. Shi, J. H. Zhao, J. Sarathy, H. Lee, and G. H. Olsen, “Tunable photodetectors based on strain compensated GaInAsSb/AlGaAsSb multiple quantum wells grown by molecular beam epitaxy,” IEEE Trans. Electron. Dev. 44(12), 2167–2173 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infared radiation,” J. Opt. Soc. Am. A 14(11), 2985–2993 (1997).
[CrossRef]

1996 (2)

S. Peng and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett. 21(8), 549–551 (1996).
[CrossRef] [PubMed]

S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[CrossRef]

1995 (1)

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[CrossRef]

1994 (2)

1993 (1)

K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys. 73(1), 21–27 (1993).
[CrossRef]

1991 (1)

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

1990 (1)

1981 (1)

Anselm, K. A.

S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[CrossRef]

Arsenault, L.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

Auslender, M.

M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency mid-infrared photodetector application,” J. Nanophoton. 5(1), 051824 (2011).
[CrossRef]

Aytur, O.

E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[CrossRef]

Bagby, J. S.

Bertness, K. A.

E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[CrossRef]

Biyikli, N.

E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[CrossRef]

Bowers, J. E.

S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[CrossRef]

Brundrett, D. L.

Campbell, J. C.

S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[CrossRef]

K. Lai and J. C. Campbell, “Design of a tunable GaAs/AlGaAs multiple-quantum-well resonant-cavity photodetector,” IEEE J. Quantum Electron. 30(1), 108–114 (1994).
[CrossRef]

Chang-Hasnain, C. J.

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
[CrossRef] [PubMed]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16(18), 14221–14226 (2008).
[CrossRef] [PubMed]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[CrossRef]

Chase, C.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Chelakara, R. V.

S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[CrossRef]

Cheng, B. W.

R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[CrossRef]

Choi, K. H.

Christensen, D. H.

E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[CrossRef]

Chyi, J. I.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[CrossRef]

Duan, X. F.

Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
[CrossRef]

Dupuis, R. D.

S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[CrossRef]

Faraone, L.

M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency mid-infrared photodetector application,” J. Nanophoton. 5(1), 051824 (2011).
[CrossRef]

Foland, S.

Friesem, A. A.

Gaylord, T. K.

Glytsis, E. N.

Gokkavas, M.

E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[CrossRef]

Hava, S.

M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency mid-infrared photodetector application,” J. Nanophoton. 5(1), 051824 (2011).
[CrossRef]

Hu, E. L.

S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[CrossRef]

Huang, H.

Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
[CrossRef]

Huang, M. C. Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16(18), 14221–14226 (2008).
[CrossRef] [PubMed]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[CrossRef]

Huang, S. C.

S. C. Huang, T. H. Yang, C. P. Lee, and S. D. Lin, “Electrically driven integrated photonic crystal nanocavity coupled surface emitting laser,” Appl. Phys. Lett. 90(15), 151121 (2007).
[CrossRef]

Huang, Y. Q.

Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
[CrossRef]

Islam, M. R.

S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[CrossRef]

Karagodsky, V.

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
[CrossRef] [PubMed]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Kasahara, K.

K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys. 73(1), 21–27 (1993).
[CrossRef]

Kim, J. P.

Kimukin, I.

E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[CrossRef]

Kishino, K.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

Kurihara, K.

K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys. 73(1), 21–27 (1993).
[CrossRef]

Lai, K.

K. Lai and J. C. Campbell, “Design of a tunable GaAs/AlGaAs multiple-quantum-well resonant-cavity photodetector,” IEEE J. Quantum Electron. 30(1), 108–114 (1994).
[CrossRef]

Lee, C. P.

S. C. Huang, T. H. Yang, C. P. Lee, and S. D. Lin, “Electrically driven integrated photonic crystal nanocavity coupled surface emitting laser,” Appl. Phys. Lett. 90(15), 151121 (2007).
[CrossRef]

Lee, H.

Y. Shi, J. H. Zhao, J. Sarathy, H. Lee, and G. H. Olsen, “Tunable photodetectors based on strain compensated GaInAsSb/AlGaAsSb multiple quantum wells grown by molecular beam epitaxy,” IEEE Trans. Electron. Dev. 44(12), 2167–2173 (1997).
[CrossRef]

Lee, J. B.

Li, C. B.

R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[CrossRef]

Lin, S. D.

S. C. Huang, T. H. Yang, C. P. Lee, and S. D. Lin, “Electrically driven integrated photonic crystal nanocavity coupled surface emitting laser,” Appl. Phys. Lett. 90(15), 151121 (2007).
[CrossRef]

Luo, L. P.

R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[CrossRef]

Magnusson, R.

Mao, R. W.

R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[CrossRef]

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[CrossRef]

Mirin, R. P.

E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[CrossRef]

Moewe, M.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Moharam, M. G.

Morkoc, H.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

Morris, G. M.

Murtaza, S. S.

S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[CrossRef]

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[CrossRef]

Numai, T.

K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys. 73(1), 21–27 (1993).
[CrossRef]

Ogura, I.

K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys. 73(1), 21–27 (1993).
[CrossRef]

Olsen, G. H.

Y. Shi, J. H. Zhao, J. Sarathy, H. Lee, and G. H. Olsen, “Tunable photodetectors based on strain compensated GaInAsSb/AlGaAsSb multiple quantum wells grown by molecular beam epitaxy,” IEEE Trans. Electron. Dev. 44(12), 2167–2173 (1997).
[CrossRef]

Özbay, E.

E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[CrossRef]

Peng, S.

Pesala, B.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Reed, J.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

Ren, X. M.

Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
[CrossRef]

Rosenblatt, D.

Sarangan, A. M.

Sarathy, J.

Y. Shi, J. H. Zhao, J. Sarathy, H. Lee, and G. H. Olsen, “Tunable photodetectors based on strain compensated GaInAsSb/AlGaAsSb multiple quantum wells grown by molecular beam epitaxy,” IEEE Trans. Electron. Dev. 44(12), 2167–2173 (1997).
[CrossRef]

Sedgwick, F. G.

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
[CrossRef] [PubMed]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Sharon, A.

Shi, Y.

Y. Shi, J. H. Zhao, J. Sarathy, H. Lee, and G. H. Olsen, “Tunable photodetectors based on strain compensated GaInAsSb/AlGaAsSb multiple quantum wells grown by molecular beam epitaxy,” IEEE Trans. Electron. Dev. 44(12), 2167–2173 (1997).
[CrossRef]

Streetman, B. G.

S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[CrossRef]

Strite, S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[CrossRef]

Sugimoto, M.

K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys. 73(1), 21–27 (1993).
[CrossRef]

Tan, I.-H.

S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[CrossRef]

Teng, X. G.

R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[CrossRef]

Ulu, G.

E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[CrossRef]

Unlu, M. S.

E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[CrossRef]

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

Ünlü, M. S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[CrossRef]

Wang, Q.

Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
[CrossRef]

Wang, Q. M.

R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[CrossRef]

Wang, S. S.

Yang, T. H.

S. C. Huang, T. H. Yang, C. P. Lee, and S. D. Lin, “Electrically driven integrated photonic crystal nanocavity coupled surface emitting laser,” Appl. Phys. Lett. 90(15), 151121 (2007).
[CrossRef]

Yang, Y. S.

Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
[CrossRef]

Yasuda, A.

K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys. 73(1), 21–27 (1993).
[CrossRef]

Ye, X. A.

Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
[CrossRef]

Yu, J. Z.

R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[CrossRef]

Zhao, J. H.

Y. Shi, J. H. Zhao, J. Sarathy, H. Lee, and G. H. Olsen, “Tunable photodetectors based on strain compensated GaInAsSb/AlGaAsSb multiple quantum wells grown by molecular beam epitaxy,” IEEE Trans. Electron. Dev. 44(12), 2167–2173 (1997).
[CrossRef]

Zhou, Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16(18), 14221–14226 (2008).
[CrossRef] [PubMed]

Zohar, M.

M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency mid-infrared photodetector application,” J. Nanophoton. 5(1), 051824 (2011).
[CrossRef]

Zuo, Y. H.

R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[CrossRef]

Adv. Mater. Res. (1)

Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[CrossRef]

R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[CrossRef]

S. C. Huang, T. H. Yang, C. P. Lee, and S. D. Lin, “Electrically driven integrated photonic crystal nanocavity coupled surface emitting laser,” Appl. Phys. Lett. 90(15), 151121 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

K. Lai and J. C. Campbell, “Design of a tunable GaAs/AlGaAs multiple-quantum-well resonant-cavity photodetector,” IEEE J. Quantum Electron. 30(1), 108–114 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

Y. Shi, J. H. Zhao, J. Sarathy, H. Lee, and G. H. Olsen, “Tunable photodetectors based on strain compensated GaInAsSb/AlGaAsSb multiple quantum wells grown by molecular beam epitaxy,” IEEE Trans. Electron. Dev. 44(12), 2167–2173 (1997).
[CrossRef]

J. Appl. Phys. (2)

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[CrossRef]

K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys. 73(1), 21–27 (1993).
[CrossRef]

J. Lightwave Technol. (1)

S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[CrossRef]

J. Nanophoton. (1)

M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency mid-infrared photodetector application,” J. Nanophoton. 5(1), 051824 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Express (3)

Opt. Lett. (2)

Other (1)

M. S. Alam, M. S. Rahman, M. R. Islam, A. G. Bhuiyan, and M. Yamada, “Refractive index, absorption coefficient, and photoelastic constant: key parameters of InGaAs material relevant to InGaAs-based device performance,” in IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. IPRM '07 (IEEE, 2007), pp. 343–346.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics