M. Mathews, R. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bend-core liquid crystals,” J. Mater. Chem. 21(7), 2098–2103 (2011).
[Crossref]
Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
[Crossref]
[PubMed]
T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref]
[PubMed]
J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. (Camb.) 46(20), 3463–3465 (2010).
[Crossref]
[PubMed]
M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref]
[PubMed]
N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).
I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).
A. Y.-G. Fuh, Ch.-H. Lin, and Ch.-Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 211–218 (2002).
[Crossref]
J.-J. Wu, F.-C. Chen, Y.-S. Wu, and S.-H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 6108–6109 (2002).
[Crossref]
H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, “Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks,” Jpn. J. Appl. Phys. 41(Part 1, No. 8), 5302–5306 (2002).
[Crossref]
S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]
S. V. Shiyanovskii, D. Voloshchenko, T. Ichikawa, and O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 225–236 (2001).
[Crossref]
N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. (Deerfield Beach Fla.) 13(15), 1135–1147 (2001).
[Crossref]
P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
[Crossref]
P. Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
[Crossref]
Yu. Reznikov and T. Sergan, “Orientational transitions in a cell with twisted nematic liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 330(1), 375–381 (1999).
[Crossref]
P. Witte, J. C. Galan, and J. Lub, “Modification of the pitch of chiral nematic liquid crystals by means of photoisomerization of chiral dopants,” Liq. Cryst. 24(6), 819–827 (1998).
[Crossref]
C. Denekamp and B. L. Feringa, “Optically active diarylethenes for multimode photoswitching between liquid crystalline phases,” Adv. Mater. (Deerfield Beach Fla.) 10(14), 1080–1082 (1998).
[Crossref]
D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]
B. L. Feringa, N. P. M. Huck, and A. M. Schoevaars, “Chiroptical molecular switches,” Adv. Mater. (Deerfield Beach Fla.) 8(8), 681–684 (1996).
[Crossref]
D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]
D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]
S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16(5), 877–882 (1994).
[Crossref]
V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced change of cholesteric LC pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192, 273–278 (1990).
B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).
P. R. Gerber, “On the determination of the cholesteric screw sense by the Grandjean-Cano-method,” Z. Naturforsch. C 35a, 619–622 (1980).
I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 27–30 (1980).
M. Brehm, H. Finkelmann, and H. Stegemeyer, “Orientation of cholesteric mesophases on lecithin-treated surfaces,” Ber. Bunsenges. Phys. Chem 78, 883–886 (1974).
P. E. Cladis and M. Kleman, “The cholesteric domain structure,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 16(1-2), 1–20 (1972).
[Crossref]
P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
[Crossref]
I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).
D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]
M. Brehm, H. Finkelmann, and H. Stegemeyer, “Orientation of cholesteric mesophases on lecithin-treated surfaces,” Ber. Bunsenges. Phys. Chem 78, 883–886 (1974).
P. Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
[Crossref]
T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref]
[PubMed]
D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]
T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref]
[PubMed]
M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref]
[PubMed]
J.-J. Wu, F.-C. Chen, Y.-S. Wu, and S.-H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 6108–6109 (2002).
[Crossref]
J.-J. Wu, F.-C. Chen, Y.-S. Wu, and S.-H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 6108–6109 (2002).
[Crossref]
S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16(5), 877–882 (1994).
[Crossref]
P. E. Cladis and M. Kleman, “The cholesteric domain structure,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 16(1-2), 1–20 (1972).
[Crossref]
C. Denekamp and B. L. Feringa, “Optically active diarylethenes for multimode photoswitching between liquid crystalline phases,” Adv. Mater. (Deerfield Beach Fla.) 10(14), 1080–1082 (1998).
[Crossref]
N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).
D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]
C. Denekamp and B. L. Feringa, “Optically active diarylethenes for multimode photoswitching between liquid crystalline phases,” Adv. Mater. (Deerfield Beach Fla.) 10(14), 1080–1082 (1998).
[Crossref]
B. L. Feringa, N. P. M. Huck, and A. M. Schoevaars, “Chiroptical molecular switches,” Adv. Mater. (Deerfield Beach Fla.) 8(8), 681–684 (1996).
[Crossref]
M. Brehm, H. Finkelmann, and H. Stegemeyer, “Orientation of cholesteric mesophases on lecithin-treated surfaces,” Ber. Bunsenges. Phys. Chem 78, 883–886 (1974).
A. Y.-G. Fuh, Ch.-H. Lin, and Ch.-Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 211–218 (2002).
[Crossref]
H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, “Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks,” Jpn. J. Appl. Phys. 41(Part 1, No. 8), 5302–5306 (2002).
[Crossref]
P. Witte, J. C. Galan, and J. Lub, “Modification of the pitch of chiral nematic liquid crystals by means of photoisomerization of chiral dopants,” Liq. Cryst. 24(6), 819–827 (1998).
[Crossref]
I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).
P. R. Gerber, “On the determination of the cholesteric screw sense by the Grandjean-Cano-method,” Z. Naturforsch. C 35a, 619–622 (1980).
D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]
T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref]
[PubMed]
N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).
A. Y.-G. Fuh, Ch.-H. Lin, and Ch.-Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 211–218 (2002).
[Crossref]
I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).
B. L. Feringa, N. P. M. Huck, and A. M. Schoevaars, “Chiroptical molecular switches,” Adv. Mater. (Deerfield Beach Fla.) 8(8), 681–684 (1996).
[Crossref]
M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref]
[PubMed]
S. V. Shiyanovskii, D. Voloshchenko, T. Ichikawa, and O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 225–236 (2001).
[Crossref]
H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, “Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks,” Jpn. J. Appl. Phys. 41(Part 1, No. 8), 5302–5306 (2002).
[Crossref]
I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 27–30 (1980).
H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, “Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks,” Jpn. J. Appl. Phys. 41(Part 1, No. 8), 5302–5306 (2002).
[Crossref]
N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).
V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced change of cholesteric LC pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192, 273–278 (1990).
H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, “Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks,” Jpn. J. Appl. Phys. 41(Part 1, No. 8), 5302–5306 (2002).
[Crossref]
P. E. Cladis and M. Kleman, “The cholesteric domain structure,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 16(1-2), 1–20 (1972).
[Crossref]
I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).
S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]
V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced change of cholesteric LC pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192, 273–278 (1990).
S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16(5), 877–882 (1994).
[Crossref]
I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).
S. V. Shiyanovskii, D. Voloshchenko, T. Ichikawa, and O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 225–236 (2001).
[Crossref]
D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]
N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).
M. Mathews, R. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bend-core liquid crystals,” J. Mater. Chem. 21(7), 2098–2103 (2011).
[Crossref]
J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. (Camb.) 46(20), 3463–3465 (2010).
[Crossref]
[PubMed]
T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref]
[PubMed]
M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref]
[PubMed]
J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. (Camb.) 46(20), 3463–3465 (2010).
[Crossref]
[PubMed]
N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).
A. Y.-G. Fuh, Ch.-H. Lin, and Ch.-Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 211–218 (2002).
[Crossref]
P. Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
[Crossref]
P. Witte, J. C. Galan, and J. Lub, “Modification of the pitch of chiral nematic liquid crystals by means of photoisomerization of chiral dopants,” Liq. Cryst. 24(6), 819–827 (1998).
[Crossref]
D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]
J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. (Camb.) 46(20), 3463–3465 (2010).
[Crossref]
[PubMed]
N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).
M. Mathews, R. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bend-core liquid crystals,” J. Mater. Chem. 21(7), 2098–2103 (2011).
[Crossref]
M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref]
[PubMed]
D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]
N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).
T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref]
[PubMed]
S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]
S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]
P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
[Crossref]
I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).
P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
[Crossref]
V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced change of cholesteric LC pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192, 273–278 (1990).
V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced change of cholesteric LC pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192, 273–278 (1990).
Yu. Reznikov and T. Sergan, “Orientational transitions in a cell with twisted nematic liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 330(1), 375–381 (1999).
[Crossref]
H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, “Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks,” Jpn. J. Appl. Phys. 41(Part 1, No. 8), 5302–5306 (2002).
[Crossref]
N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).
B. L. Feringa, N. P. M. Huck, and A. M. Schoevaars, “Chiroptical molecular switches,” Adv. Mater. (Deerfield Beach Fla.) 8(8), 681–684 (1996).
[Crossref]
I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).
Yu. Reznikov and T. Sergan, “Orientational transitions in a cell with twisted nematic liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 330(1), 375–381 (1999).
[Crossref]
S. V. Shiyanovskii, D. Voloshchenko, T. Ichikawa, and O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 225–236 (2001).
[Crossref]
I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 27–30 (1980).
I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).
M. Brehm, H. Finkelmann, and H. Stegemeyer, “Orientation of cholesteric mesophases on lecithin-treated surfaces,” Ber. Bunsenges. Phys. Chem 78, 883–886 (1974).
D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]
B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).
I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).
N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. (Deerfield Beach Fla.) 13(15), 1135–1147 (2001).
[Crossref]
I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 27–30 (1980).
I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 27–30 (1980).
T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref]
[PubMed]
J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. (Camb.) 46(20), 3463–3465 (2010).
[Crossref]
[PubMed]
S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16(5), 877–882 (1994).
[Crossref]
N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).
V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced change of cholesteric LC pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192, 273–278 (1990).
S. V. Shiyanovskii, D. Voloshchenko, T. Ichikawa, and O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 225–236 (2001).
[Crossref]
J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. (Camb.) 46(20), 3463–3465 (2010).
[Crossref]
[PubMed]
T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref]
[PubMed]
M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref]
[PubMed]
P. Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
[Crossref]
P. Witte, J. C. Galan, and J. Lub, “Modification of the pitch of chiral nematic liquid crystals by means of photoisomerization of chiral dopants,” Liq. Cryst. 24(6), 819–827 (1998).
[Crossref]
J.-J. Wu, F.-C. Chen, Y.-S. Wu, and S.-H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 6108–6109 (2002).
[Crossref]
J.-J. Wu, F.-C. Chen, Y.-S. Wu, and S.-H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 6108–6109 (2002).
[Crossref]
M. Mathews, R. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bend-core liquid crystals,” J. Mater. Chem. 21(7), 2098–2103 (2011).
[Crossref]
M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref]
[PubMed]
D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]
D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]
S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16(5), 877–882 (1994).
[Crossref]
B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).
M. Mathews, R. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bend-core liquid crystals,” J. Mater. Chem. 21(7), 2098–2103 (2011).
[Crossref]
M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref]
[PubMed]
C. Denekamp and B. L. Feringa, “Optically active diarylethenes for multimode photoswitching between liquid crystalline phases,” Adv. Mater. (Deerfield Beach Fla.) 10(14), 1080–1082 (1998).
[Crossref]
N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. (Deerfield Beach Fla.) 13(15), 1135–1147 (2001).
[Crossref]
B. L. Feringa, N. P. M. Huck, and A. M. Schoevaars, “Chiroptical molecular switches,” Adv. Mater. (Deerfield Beach Fla.) 8(8), 681–684 (1996).
[Crossref]
D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]
D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]
M. Brehm, H. Finkelmann, and H. Stegemeyer, “Orientation of cholesteric mesophases on lecithin-treated surfaces,” Ber. Bunsenges. Phys. Chem 78, 883–886 (1974).
J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. (Camb.) 46(20), 3463–3465 (2010).
[Crossref]
[PubMed]
S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]
M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref]
[PubMed]
M. Mathews, R. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bend-core liquid crystals,” J. Mater. Chem. 21(7), 2098–2103 (2011).
[Crossref]
P. Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
[Crossref]
N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).
I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 27–30 (1980).
A. Y.-G. Fuh, Ch.-H. Lin, and Ch.-Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 211–218 (2002).
[Crossref]
J.-J. Wu, F.-C. Chen, Y.-S. Wu, and S.-H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 6108–6109 (2002).
[Crossref]
H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, “Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks,” Jpn. J. Appl. Phys. 41(Part 1, No. 8), 5302–5306 (2002).
[Crossref]
S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16(5), 877–882 (1994).
[Crossref]
P. Witte, J. C. Galan, and J. Lub, “Modification of the pitch of chiral nematic liquid crystals by means of photoisomerization of chiral dopants,” Liq. Cryst. 24(6), 819–827 (1998).
[Crossref]
S. V. Shiyanovskii, D. Voloshchenko, T. Ichikawa, and O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 225–236 (2001).
[Crossref]
Yu. Reznikov and T. Sergan, “Orientational transitions in a cell with twisted nematic liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 330(1), 375–381 (1999).
[Crossref]
V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced change of cholesteric LC pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192, 273–278 (1990).
P. E. Cladis and M. Kleman, “The cholesteric domain structure,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 16(1-2), 1–20 (1972).
[Crossref]
D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]
T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref]
[PubMed]
Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
[Crossref]
[PubMed]
P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
[Crossref]
I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).
B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).
P. R. Gerber, “On the determination of the cholesteric screw sense by the Grandjean-Cano-method,” Z. Naturforsch. C 35a, 619–622 (1980).
S. V. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley-VCH, 1999).
L. Li, J. Li, B. Fan, Y. Jiang, and S. M. Faris, “Reflective cholesteric liquid crystal polarizers and their applications,” Proc. SPIE-Int. Soc. Opt. Eng. 3560, 33–40 (1998).
B. Taheri, J. W. Doane, D. Davis, and D. St. John, “Optical properties of bistable cholesteric reflective displays,” SID Int. Symp. Digest Tech. Papers 27, 39–42 (1996).
Z. Li, P. Desai, R. B. Akins, G. Ventouris, and D. Voloschenko, “Electrically tunable color for full-color refractive displays,” in Liquid Crystal Materials, Devices, and Applications VIII, L.-C. Chien, ed., Proc. SPIE 4658, 7–13 (2002).
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993).
P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concept and Physical Properties Illustrated by Experiments (CRC Press, 2005).
D. Demus and L. Ritcher, Textures of Liquid Crystals (Wiley VCH, 1980).
In addition to this effect, the short-pitch helical structures (p = 0.3–0.6 μm), known as uniform lying helix (ULH), can also be switched due to the flexoelectric effect. In this case, the applied electric field causes fast rotation of cholesteric helix in the cell plane due to the linear coupling between an electric polarization and splay/bend deformations of LC. The ULH texture can be transformed to the fingerprint texture in the electric field at values close to the unwinding voltage. In the present studies we are limited to the long-pitch CLC, which exhibit clear fingerprint textures at a zero field.