Abstract

Structural changes caused by the optically induced helical inversion in the cholesteric liquid crystal cells with homeotropic anchoring are studied. In a one-step exposure, a sequence of structural transformations “lying left-handed helix – unwound homeotropic state – lying right-handed helix” is realized. In this process, smooth expansion of a left-handed helix, transition to an unwound state, emergence and smooth compression of a right-handed helix was observed. The unwound state was maintained over a rather wide range of exposures. Well-oriented and highly periodic fingerprint textures capable of the above mentioned structural changes were obtained by rubbing the aligning substrates. This allowed for obtaining photo-tunable diffraction gratings and using them to demonstrate new beam steering principle. Also, pitch reversal suggested new options for optical recording, in particular contrast reversal and edge enhancement.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993).
  2. P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concept and Physical Properties Illustrated by Experiments (CRC Press, 2005).
  3. D. Demus and L. Ritcher, Textures of Liquid Crystals (Wiley VCH, 1980).
  4. T. K. Gaylord and M. G. Moharam, “Thin and thick gratings: terminology clarification,” Appl. Opt. 20(19), 3271–3273 (1981).
    [CrossRef] [PubMed]
  5. D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
    [CrossRef]
  6. B. Taheri, J. W. Doane, D. Davis, and D. St. John, “Optical properties of bistable cholesteric reflective displays,” SID Int. Symp. Digest Tech. Papers 27, 39–42 (1996).
  7. Z. Li, P. Desai, R. B. Akins, G. Ventouris, and D. Voloschenko, “Electrically tunable color for full-color refractive displays,” in Liquid Crystal Materials, Devices, and Applications VIII, L.-C. Chien, ed., Proc. SPIE 4658, 7–13 (2002).
  8. D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
    [CrossRef]
  9. L. Li, J. Li, B. Fan, Y. Jiang, and S. M. Faris, “Reflective cholesteric liquid crystal polarizers and their applications,” Proc. SPIE-Int. Soc. Opt. Eng. 3560, 33–40 (1998).
  10. Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
    [CrossRef] [PubMed]
  11. I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 27–30 (1980).
  12. C. Denekamp and B. L. Feringa, “Optically active diarylethenes for multimode photoswitching between liquid crystalline phases,” Adv. Mater. (Deerfield Beach Fla.) 10(14), 1080–1082 (1998).
    [CrossRef]
  13. S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
    [CrossRef]
  14. M. Brehm, H. Finkelmann, and H. Stegemeyer, “Orientation of cholesteric mesophases on lecithin-treated surfaces,” Ber. Bunsenges. Phys. Chem 78, 883–886 (1974).
  15. D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
    [CrossRef]
  16. P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
    [CrossRef]
  17. S. V. Shiyanovskii, D. Voloshchenko, T. Ichikawa, and O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 225–236 (2001).
    [CrossRef]
  18. A. Y.-G. Fuh, Ch.-H. Lin, and Ch.-Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 211–218 (2002).
    [CrossRef]
  19. J.-J. Wu, F.-C. Chen, Y.-S. Wu, and S.-H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 6108–6109 (2002).
    [CrossRef]
  20. I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).
  21. In addition to this effect, the short-pitch helical structures (p = 0.3–0.6 μm), known as uniform lying helix (ULH), can also be switched due to the flexoelectric effect. In this case, the applied electric field causes fast rotation of cholesteric helix in the cell plane due to the linear coupling between an electric polarization and splay/bend deformations of LC. The ULH texture can be transformed to the fingerprint texture in the electric field at values close to the unwinding voltage. In the present studies we are limited to the long-pitch CLC, which exhibit clear fingerprint textures at a zero field.
  22. P. E. Cladis and M. Kleman, “The cholesteric domain structure,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 16(1-2), 1–20 (1972).
    [CrossRef]
  23. B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).
  24. N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. (Deerfield Beach Fla.) 13(15), 1135–1147 (2001).
    [CrossRef]
  25. P. Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
    [CrossRef]
  26. N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).
  27. V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced change of cholesteric LC pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192, 273–278 (1990).
  28. B. L. Feringa, N. P. M. Huck, and A. M. Schoevaars, “Chiroptical molecular switches,” Adv. Mater. (Deerfield Beach Fla.) 8(8), 681–684 (1996).
    [CrossRef]
  29. P. Witte, J. C. Galan, and J. Lub, “Modification of the pitch of chiral nematic liquid crystals by means of photoisomerization of chiral dopants,” Liq. Cryst. 24(6), 819–827 (1998).
    [CrossRef]
  30. T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
    [CrossRef] [PubMed]
  31. J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. (Camb.) 46(20), 3463–3465 (2010).
    [CrossRef] [PubMed]
  32. M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
    [CrossRef] [PubMed]
  33. M. Mathews, R. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bend-core liquid crystals,” J. Mater. Chem. 21(7), 2098–2103 (2011).
    [CrossRef]
  34. Yu. Reznikov and T. Sergan, “Orientational transitions in a cell with twisted nematic liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 330(1), 375–381 (1999).
    [CrossRef]
  35. S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16(5), 877–882 (1994).
    [CrossRef]
  36. P. R. Gerber, “On the determination of the cholesteric screw sense by the Grandjean-Cano-method,” Z. Naturforsch. C 35a, 619–622 (1980).
  37. S. V. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley-VCH, 1999).
  38. H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, “Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks,” Jpn. J. Appl. Phys. 41(Part 1, No. 8), 5302–5306 (2002).
    [CrossRef]

2011 (2)

Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
[CrossRef] [PubMed]

M. Mathews, R. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bend-core liquid crystals,” J. Mater. Chem. 21(7), 2098–2103 (2011).
[CrossRef]

2010 (3)

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[CrossRef] [PubMed]

J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. (Camb.) 46(20), 3463–3465 (2010).
[CrossRef] [PubMed]

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[CrossRef] [PubMed]

2009 (1)

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).

2005 (1)

I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).

2002 (3)

A. Y.-G. Fuh, Ch.-H. Lin, and Ch.-Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 211–218 (2002).
[CrossRef]

J.-J. Wu, F.-C. Chen, Y.-S. Wu, and S.-H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 6108–6109 (2002).
[CrossRef]

H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, “Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks,” Jpn. J. Appl. Phys. 41(Part 1, No. 8), 5302–5306 (2002).
[CrossRef]

2001 (3)

N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. (Deerfield Beach Fla.) 13(15), 1135–1147 (2001).
[CrossRef]

S. V. Shiyanovskii, D. Voloshchenko, T. Ichikawa, and O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 225–236 (2001).
[CrossRef]

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[CrossRef]

2000 (1)

P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
[CrossRef]

1999 (2)

P. Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
[CrossRef]

Yu. Reznikov and T. Sergan, “Orientational transitions in a cell with twisted nematic liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 330(1), 375–381 (1999).
[CrossRef]

1998 (2)

P. Witte, J. C. Galan, and J. Lub, “Modification of the pitch of chiral nematic liquid crystals by means of photoisomerization of chiral dopants,” Liq. Cryst. 24(6), 819–827 (1998).
[CrossRef]

C. Denekamp and B. L. Feringa, “Optically active diarylethenes for multimode photoswitching between liquid crystalline phases,” Adv. Mater. (Deerfield Beach Fla.) 10(14), 1080–1082 (1998).
[CrossRef]

1997 (1)

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[CrossRef]

1996 (1)

B. L. Feringa, N. P. M. Huck, and A. M. Schoevaars, “Chiroptical molecular switches,” Adv. Mater. (Deerfield Beach Fla.) 8(8), 681–684 (1996).
[CrossRef]

1995 (1)

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[CrossRef]

1994 (2)

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16(5), 877–882 (1994).
[CrossRef]

1990 (1)

V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced change of cholesteric LC pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192, 273–278 (1990).

1982 (1)

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

1981 (1)

1980 (2)

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 27–30 (1980).

P. R. Gerber, “On the determination of the cholesteric screw sense by the Grandjean-Cano-method,” Z. Naturforsch. C 35a, 619–622 (1980).

1974 (1)

M. Brehm, H. Finkelmann, and H. Stegemeyer, “Orientation of cholesteric mesophases on lecithin-treated surfaces,” Ber. Bunsenges. Phys. Chem 78, 883–886 (1974).

1972 (1)

P. E. Cladis and M. Kleman, “The cholesteric domain structure,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 16(1-2), 1–20 (1972).
[CrossRef]

Baudry, J.

P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
[CrossRef]

Bodnar, V.

I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).

Bos, P. J.

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[CrossRef]

Brehm, M.

M. Brehm, H. Finkelmann, and H. Stegemeyer, “Orientation of cholesteric mesophases on lecithin-treated surfaces,” Ber. Bunsenges. Phys. Chem 78, 883–886 (1974).

Brehmer, M.

P. Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
[CrossRef]

Bricker, R. L.

Broer, D. J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[CrossRef]

Bunning, T. J.

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[CrossRef] [PubMed]

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[CrossRef] [PubMed]

Chen, F.-C.

J.-J. Wu, F.-C. Chen, Y.-S. Wu, and S.-H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 6108–6109 (2002).
[CrossRef]

Chen, S.-H.

J.-J. Wu, F.-C. Chen, Y.-S. Wu, and S.-H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 6108–6109 (2002).
[CrossRef]

Chepeleva, L. V.

S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16(5), 877–882 (1994).
[CrossRef]

Cladis, P. E.

P. E. Cladis and M. Kleman, “The cholesteric domain structure,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 16(1-2), 1–20 (1972).
[CrossRef]

Denekamp, C.

C. Denekamp and B. L. Feringa, “Optically active diarylethenes for multimode photoswitching between liquid crystalline phases,” Adv. Mater. (Deerfield Beach Fla.) 10(14), 1080–1082 (1998).
[CrossRef]

Doane, J. W.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

Feringa, B. L.

C. Denekamp and B. L. Feringa, “Optically active diarylethenes for multimode photoswitching between liquid crystalline phases,” Adv. Mater. (Deerfield Beach Fla.) 10(14), 1080–1082 (1998).
[CrossRef]

B. L. Feringa, N. P. M. Huck, and A. M. Schoevaars, “Chiroptical molecular switches,” Adv. Mater. (Deerfield Beach Fla.) 8(8), 681–684 (1996).
[CrossRef]

Finkelmann, H.

M. Brehm, H. Finkelmann, and H. Stegemeyer, “Orientation of cholesteric mesophases on lecithin-treated surfaces,” Ber. Bunsenges. Phys. Chem 78, 883–886 (1974).

Fuh, A. Y.-G.

A. Y.-G. Fuh, Ch.-H. Lin, and Ch.-Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 211–218 (2002).
[CrossRef]

Fujikake, H.

H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, “Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks,” Jpn. J. Appl. Phys. 41(Part 1, No. 8), 5302–5306 (2002).
[CrossRef]

Galan, J. C.

P. Witte, J. C. Galan, and J. Lub, “Modification of the pitch of chiral nematic liquid crystals by means of photoisomerization of chiral dopants,” Liq. Cryst. 24(6), 819–827 (1998).
[CrossRef]

Gartland, E.

I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).

Gaylord, T. K.

Gerber, P. R.

P. R. Gerber, “On the determination of the cholesteric screw sense by the Grandjean-Cano-method,” Z. Naturforsch. C 35a, 619–622 (1980).

Glasser, J.

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

Green, L.

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[CrossRef] [PubMed]

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).

Hsiao, Y.-C.

Huang, Ch.-Y.

A. Y.-G. Fuh, Ch.-H. Lin, and Ch.-Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 211–218 (2002).
[CrossRef]

Huang, H.

I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).

Huck, N. P. M.

B. L. Feringa, N. P. M. Huck, and A. M. Schoevaars, “Chiroptical molecular switches,” Adv. Mater. (Deerfield Beach Fla.) 8(8), 681–684 (1996).
[CrossRef]

Hurley, S.

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[CrossRef] [PubMed]

Ichikawa, T.

S. V. Shiyanovskii, D. Voloshchenko, T. Ichikawa, and O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 225–236 (2001).
[CrossRef]

Iino, Y.

H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, “Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks,” Jpn. J. Appl. Phys. 41(Part 1, No. 8), 5302–5306 (2002).
[CrossRef]

Ilchishin, I. P.

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 27–30 (1980).

Kawakita, M.

H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, “Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks,” Jpn. J. Appl. Phys. 41(Part 1, No. 8), 5302–5306 (2002).
[CrossRef]

Khan, A.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).

Khizhnyak, A.

V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced change of cholesteric LC pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192, 273–278 (1990).

Kikuchi, H.

H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, “Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks,” Jpn. J. Appl. Phys. 41(Part 1, No. 8), 5302–5306 (2002).
[CrossRef]

Kleman, M.

P. E. Cladis and M. Kleman, “The cholesteric domain structure,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 16(1-2), 1–20 (1972).
[CrossRef]

Kosa, T.

I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).

Kurihara, S.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[CrossRef]

Kutulya, L.

V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced change of cholesteric LC pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192, 273–278 (1990).

Kutulya, L. A.

S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16(5), 877–882 (1994).
[CrossRef]

Lavrentovich, O. D.

I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).

S. V. Shiyanovskii, D. Voloshchenko, T. Ichikawa, and O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 225–236 (2001).
[CrossRef]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[CrossRef]

Lee, Q.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).

Lee, W.

Li, Q.

M. Mathews, R. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bend-core liquid crystals,” J. Mater. Chem. 21(7), 2098–2103 (2011).
[CrossRef]

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[CrossRef] [PubMed]

J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. (Camb.) 46(20), 3463–3465 (2010).
[CrossRef] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[CrossRef] [PubMed]

Li, Ya.

J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. (Camb.) 46(20), 3463–3465 (2010).
[CrossRef] [PubMed]

Lightfoot, M.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).

Lin, Ch.-H.

A. Y.-G. Fuh, Ch.-H. Lin, and Ch.-Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 211–218 (2002).
[CrossRef]

Lub, J.

P. Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
[CrossRef]

P. Witte, J. C. Galan, and J. Lub, “Modification of the pitch of chiral nematic liquid crystals by means of photoisomerization of chiral dopants,” Liq. Cryst. 24(6), 819–827 (1998).
[CrossRef]

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[CrossRef]

Ma, J.

J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. (Camb.) 46(20), 3463–3465 (2010).
[CrossRef] [PubMed]

Magyar, G.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).

Mathews, M.

M. Mathews, R. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bend-core liquid crystals,” J. Mater. Chem. 21(7), 2098–2103 (2011).
[CrossRef]

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[CrossRef] [PubMed]

Moharam, M. G.

Mol, G. N.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[CrossRef]

Montbach, E.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).

Natarajan, L. V.

Nomiyama, S.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[CrossRef]

Nonaka, T.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[CrossRef]

Oswald, P.

P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
[CrossRef]

Palffy-Muhoray, P.

I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).

Pirkl, S.

P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
[CrossRef]

Reshetnyak, V.

V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced change of cholesteric LC pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192, 273–278 (1990).

Reznikov, Y.

V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced change of cholesteric LC pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192, 273–278 (1990).

Reznikov, Yu.

Yu. Reznikov and T. Sergan, “Orientational transitions in a cell with twisted nematic liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 330(1), 375–381 (1999).
[CrossRef]

Sato, H.

H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, “Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks,” Jpn. J. Appl. Phys. 41(Part 1, No. 8), 5302–5306 (2002).
[CrossRef]

Schneider, T.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).

Schoevaars, A. M.

B. L. Feringa, N. P. M. Huck, and A. M. Schoevaars, “Chiroptical molecular switches,” Adv. Mater. (Deerfield Beach Fla.) 8(8), 681–684 (1996).
[CrossRef]

Senyuk, B.

I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).

Sergan, T.

Yu. Reznikov and T. Sergan, “Orientational transitions in a cell with twisted nematic liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 330(1), 375–381 (1999).
[CrossRef]

Shiyanovskii, S. V.

S. V. Shiyanovskii, D. Voloshchenko, T. Ichikawa, and O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 225–236 (2001).
[CrossRef]

Shpak, M. T.

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 27–30 (1980).

Smalukh, I.

I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).

Stegemeyer, H.

M. Brehm, H. Finkelmann, and H. Stegemeyer, “Orientation of cholesteric mesophases on lecithin-treated surfaces,” Ber. Bunsenges. Phys. Chem 78, 883–886 (1974).

Subacius, D.

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[CrossRef]

Tabiryan, N. V.

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

Taheri, B.

I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).

Tamaoki, N.

N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. (Deerfield Beach Fla.) 13(15), 1135–1147 (2001).
[CrossRef]

Tang, C.-Y.

Tikhonov, E. A.

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 27–30 (1980).

Tishchenko, V. G.

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 27–30 (1980).

Tondiglia, V. P.

Urbas, A.

J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. (Camb.) 46(20), 3463–3465 (2010).
[CrossRef] [PubMed]

Vaschenko, V. V.

S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16(5), 877–882 (1994).
[CrossRef]

Venkataraman, N.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).

Vinogradov, V.

V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced change of cholesteric LC pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192, 273–278 (1990).

Voloshchenko, D.

S. V. Shiyanovskii, D. Voloshchenko, T. Ichikawa, and O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 225–236 (2001).
[CrossRef]

White, T.

J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. (Camb.) 46(20), 3463–3465 (2010).
[CrossRef] [PubMed]

White, T. J.

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[CrossRef] [PubMed]

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[CrossRef] [PubMed]

Witte, P.

P. Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
[CrossRef]

P. Witte, J. C. Galan, and J. Lub, “Modification of the pitch of chiral nematic liquid crystals by means of photoisomerization of chiral dopants,” Liq. Cryst. 24(6), 819–827 (1998).
[CrossRef]

Wu, J.-J.

J.-J. Wu, F.-C. Chen, Y.-S. Wu, and S.-H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 6108–6109 (2002).
[CrossRef]

Wu, Y.-S.

J.-J. Wu, F.-C. Chen, Y.-S. Wu, and S.-H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 6108–6109 (2002).
[CrossRef]

Yang, D.

M. Mathews, R. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bend-core liquid crystals,” J. Mater. Chem. 21(7), 2098–2103 (2011).
[CrossRef]

Yang, D. K.

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[CrossRef] [PubMed]

Yang, D.-K.

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

Yaniv, Z.

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

Yarmolenko, S. N.

S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16(5), 877–882 (1994).
[CrossRef]

Zeldovich, B. Y.

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

Zola, R.

M. Mathews, R. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bend-core liquid crystals,” J. Mater. Chem. 21(7), 2098–2103 (2011).
[CrossRef]

Zola, R. S.

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (3)

C. Denekamp and B. L. Feringa, “Optically active diarylethenes for multimode photoswitching between liquid crystalline phases,” Adv. Mater. (Deerfield Beach Fla.) 10(14), 1080–1082 (1998).
[CrossRef]

N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. (Deerfield Beach Fla.) 13(15), 1135–1147 (2001).
[CrossRef]

B. L. Feringa, N. P. M. Huck, and A. M. Schoevaars, “Chiroptical molecular switches,” Adv. Mater. (Deerfield Beach Fla.) 8(8), 681–684 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[CrossRef]

Ber. Bunsenges. Phys. Chem (1)

M. Brehm, H. Finkelmann, and H. Stegemeyer, “Orientation of cholesteric mesophases on lecithin-treated surfaces,” Ber. Bunsenges. Phys. Chem 78, 883–886 (1974).

Chem. Commun. (Camb.) (1)

J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. (Camb.) 46(20), 3463–3465 (2010).
[CrossRef] [PubMed]

Chem. Mater. (1)

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[CrossRef]

J. Am. Chem. Soc. (1)

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[CrossRef] [PubMed]

J. Mater. Chem. (2)

M. Mathews, R. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bend-core liquid crystals,” J. Mater. Chem. 21(7), 2098–2103 (2011).
[CrossRef]

P. Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
[CrossRef]

J. Soc. Inf. Disp. (1)

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Lee, “Thin flexible photosensitive cholesteric displays,” J. Soc. Inf. Disp. 17, 869–873 (2009).

JETP Lett. (1)

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 27–30 (1980).

Jpn. J. Appl. Phys. (3)

A. Y.-G. Fuh, Ch.-H. Lin, and Ch.-Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(Part 1, No. 1), 211–218 (2002).
[CrossRef]

J.-J. Wu, F.-C. Chen, Y.-S. Wu, and S.-H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 6108–6109 (2002).
[CrossRef]

H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, “Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks,” Jpn. J. Appl. Phys. 41(Part 1, No. 8), 5302–5306 (2002).
[CrossRef]

Liq. Cryst. (2)

S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16(5), 877–882 (1994).
[CrossRef]

P. Witte, J. C. Galan, and J. Lub, “Modification of the pitch of chiral nematic liquid crystals by means of photoisomerization of chiral dopants,” Liq. Cryst. 24(6), 819–827 (1998).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (4)

P. E. Cladis and M. Kleman, “The cholesteric domain structure,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 16(1-2), 1–20 (1972).
[CrossRef]

Yu. Reznikov and T. Sergan, “Orientational transitions in a cell with twisted nematic liquid crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 330(1), 375–381 (1999).
[CrossRef]

V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced change of cholesteric LC pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192, 273–278 (1990).

S. V. Shiyanovskii, D. Voloshchenko, T. Ichikawa, and O. D. Lavrentovich, “Director structures of cholesteric diffraction gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358(1), 225–236 (2001).
[CrossRef]

Nature (1)

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[CrossRef]

Opt. Express (2)

Phys. Rep. (1)

P. Oswald, J. Baudry, and S. Pirkl, “Static and dynamic properties of cholesteric fingers in electric field,” Phys. Rep. 337(1-2), 67–96 (2000).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

I. Smalukh, B. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. Gartland, V. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimentional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 0617071–06170716 (2005).

Sov. Phys. JETP (1)

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

Z. Naturforsch. C (1)

P. R. Gerber, “On the determination of the cholesteric screw sense by the Grandjean-Cano-method,” Z. Naturforsch. C 35a, 619–622 (1980).

Other (8)

S. V. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley-VCH, 1999).

In addition to this effect, the short-pitch helical structures (p = 0.3–0.6 μm), known as uniform lying helix (ULH), can also be switched due to the flexoelectric effect. In this case, the applied electric field causes fast rotation of cholesteric helix in the cell plane due to the linear coupling between an electric polarization and splay/bend deformations of LC. The ULH texture can be transformed to the fingerprint texture in the electric field at values close to the unwinding voltage. In the present studies we are limited to the long-pitch CLC, which exhibit clear fingerprint textures at a zero field.

L. Li, J. Li, B. Fan, Y. Jiang, and S. M. Faris, “Reflective cholesteric liquid crystal polarizers and their applications,” Proc. SPIE-Int. Soc. Opt. Eng. 3560, 33–40 (1998).

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993).

P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concept and Physical Properties Illustrated by Experiments (CRC Press, 2005).

D. Demus and L. Ritcher, Textures of Liquid Crystals (Wiley VCH, 1980).

B. Taheri, J. W. Doane, D. Davis, and D. St. John, “Optical properties of bistable cholesteric reflective displays,” SID Int. Symp. Digest Tech. Papers 27, 39–42 (1996).

Z. Li, P. Desai, R. B. Akins, G. Ventouris, and D. Voloschenko, “Electrically tunable color for full-color refractive displays,” in Liquid Crystal Materials, Devices, and Applications VIII, L.-C. Chien, ed., Proc. SPIE 4658, 7–13 (2002).

Supplementary Material (1)

» Media 1: AVI (2797 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Absorption spectra of PBM (a, c) and R811 (b, d) in hexane solution before and after UV irradiation. Spectra (a, b) correspond to direct irradiation, and (c, d) to irradiation through a glass plate. Numbers 1 and 2 stand for the spectra before and after 45 min irradiation, respectively.

Fig. 2
Fig. 2

Photograph of LC cell (d=20 μm) with homeotropic anchoring filled with the cholesteric mixture MLC6884/PBM/R811. The cell is irradiated through a proximity mask with UV light so that the exposure time is 5, 120 and 300 s in areas 1, 2 and 3, respectively. These areas represent (1) a left-handed cholesteric LC, (2) nematic LC and (3) a right-handed cholesteric LC. The cell is viewed between two crossed polarizers.

Fig. 3
Fig. 3

Microphotographs corresponding to areas 1, 2 and 3 in Fig. 2; (a) fingerprint texture of a left-handed cholesteric LC, (b) compensated nematic texture, and (c) fingerprint texture of a right-handed cholesteric LC.

Fig. 4
Fig. 4

The pitch length vs. exposure time curves. (a) Single-dopant cholesteric mixtures MLC6884/R811 (curve 1) and MLC6884/PBM (curve 2) in the cells with thickness d = 16 μm. (b) Two-dopant cholesteric mixture MLC6884/PBM/R811 in the cells with d = 10, 16 and 20 μm, curves 1, 2, and 3, respectively. Open symbols correspond to left-handed helical structures, and solid symbols denote the right-handed helical structures. The areas highlighted in gray correspond to unwound cholesteric structure realized for the PBM containing mixtures in the cells with d = 10 μm. The inset depicts the ascending branches of p(τexp) dependences in an enlarged scale.

Fig. 5
Fig. 5

The photoinduced inversion of optical images in CLC cell with homeotropic anchoring. The 10 μm cell based on non-rubbed SE1211 alignment layers and filled with CLC MLC6884/PBM/R811 is viewed between crossed polarizers (picture 1). At first the cell is irradiated during 40 s through a mask with the transparent areas in an “IOP” form (picture 2) and then during 40 s entirely (picture 3). As a result, image 3 is inversed to image 2.

Fig. 6
Fig. 6

(a) Microphotographs of aligned fingerprint textures (gratings) formed after different exposure times. Thickness of LC cell is 18 μm. Observation under crossed polarizers. (b) Diffraction patterns corresponding to gratings in Fig. 6(a).

Fig. 7
Fig. 7

Diffraction efficiency (a) and diffraction angle (b) as function of exposure time for periodic structure of CLC MLC6884/PBM/R811 in the 18 μm cell with rubbed layers of homeotropic polyimide. In the plots, the area highlighted in gray corresponds to unwound cholesteric structure (absence of grating).

Fig. 8
Fig. 8

Single-frame from a Media 1 demonstrating new beam steering principle. The left picture shows changing of fingerprint grating and the right one shows a change in position of diffraction patterns with exposure time.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

p th =2d K 22 K 33

Metrics