Abstract

We present the numerical and experimental demonstration of plasmonic Bragg filters and resonators inside metal-insulator-metal (MIM) waveguides. The presented filters and resonators are fabricated using standard top down lithography methods. The optical bandgap of the integrated Bragg filters is experimentally observed and its optical properties are investigated as a function of the grating pitch and the number of grating periods. Transmission filters based on a nanocavity resonance were measured, obtaining Q-factors above 30. Tuning of the cavity wavelength was experimentally achieved by varying the cavity length.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
    [CrossRef]
  2. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
    [CrossRef]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  4. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
    [CrossRef] [PubMed]
  5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
    [CrossRef] [PubMed]
  6. A. L. Falk, F. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M. Jo, M. D. lukin, and H. Park, “Near-field electical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
    [CrossRef]
  7. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [CrossRef]
  8. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006).
    [CrossRef] [PubMed]
  9. P. Neutens, P. Van Dorpe, L. Lagae, and G. Borghs, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10, 1429–1432 (2010).
    [CrossRef] [PubMed]
  10. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
    [CrossRef]
  11. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
    [CrossRef]
  12. A. R. Md Zain, N. P. Johnson, M. Sorel, and M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–112089 (2008).
    [CrossRef]
  13. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a ”zipper” photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
    [CrossRef] [PubMed]
  14. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323 (2006).
    [CrossRef]
  15. J.-Q. Liu, L.-L. Wang, M.-D. He, W.-Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16, 4888–4894 (2008).
    [CrossRef] [PubMed]
  16. Y. Liu, Y. Liu, and J. Kim, “Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18, 11589–11598 (2010).
    [CrossRef] [PubMed]
  17. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photonics Technol. Lett. 19, 91–93 (2007).
    [CrossRef]
  18. Y. Q. D. Gan, J. Ma, J. Cui, C. Wang, and X. Luo, “Spectrally selective splitters with metal-dielectric-metal surface plasmon waveguides,” Appl. Phys. B 95, 807–812 (2009).
    [CrossRef]
  19. www.comsol.com .
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
  21. J. A. Sánchez-Gil, “Distributed feedback gratings for surface-plasmon polaritons based on metal nanogroove/ridge arrays,” Opt. Lett. 32(16), 2330–2332 (2007).
    [CrossRef] [PubMed]
  22. J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: Efficient mirrors,” Appl. Phys. Lett. 86, 251106 (2005).
    [CrossRef]
  23. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
    [CrossRef] [PubMed]
  24. M. Kuttge, H. Kurz, J. Gómez Rivas, J. A. Sánchez-Gil, and P. Haring Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys. 101, 023707 (2007).
    [CrossRef]
  25. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
    [CrossRef]
  26. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-galery microcavity,” Nature 457, 455–459 (2009).
    [CrossRef] [PubMed]
  27. P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91, 191122 (2007).
  28. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated Surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
    [CrossRef] [PubMed]
  29. Z. Han, “Ultracompact plasmonic racetrack resonators in metal-insulator-metal waveguides,” Photonic Nanostruct. 8(3), 172–176 (2010).
    [CrossRef]
  30. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43, 055103 (2010).
    [CrossRef]
  31. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
    [CrossRef] [PubMed]
  32. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
    [CrossRef] [PubMed]
  33. A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys.- Condens. Mat. 21, 375301 (2009).
    [CrossRef]

2010 (5)

P. Neutens, P. Van Dorpe, L. Lagae, and G. Borghs, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10, 1429–1432 (2010).
[CrossRef] [PubMed]

Y. Liu, Y. Liu, and J. Kim, “Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18, 11589–11598 (2010).
[CrossRef] [PubMed]

Z. Han, “Ultracompact plasmonic racetrack resonators in metal-insulator-metal waveguides,” Photonic Nanostruct. 8(3), 172–176 (2010).
[CrossRef]

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43, 055103 (2010).
[CrossRef]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
[CrossRef] [PubMed]

2009 (7)

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys.- Condens. Mat. 21, 375301 (2009).
[CrossRef]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-galery microcavity,” Nature 457, 455–459 (2009).
[CrossRef] [PubMed]

Y. Q. D. Gan, J. Ma, J. Cui, C. Wang, and X. Luo, “Spectrally selective splitters with metal-dielectric-metal surface plasmon waveguides,” Appl. Phys. B 95, 807–812 (2009).
[CrossRef]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a ”zipper” photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
[CrossRef] [PubMed]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

A. L. Falk, F. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M. Jo, M. D. lukin, and H. Park, “Near-field electical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

2008 (4)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

A. R. Md Zain, N. P. Johnson, M. Sorel, and M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–112089 (2008).
[CrossRef]

J.-Q. Liu, L.-L. Wang, M.-D. He, W.-Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16, 4888–4894 (2008).
[CrossRef] [PubMed]

2007 (5)

J. A. Sánchez-Gil, “Distributed feedback gratings for surface-plasmon polaritons based on metal nanogroove/ridge arrays,” Opt. Lett. 32(16), 2330–2332 (2007).
[CrossRef] [PubMed]

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photonics Technol. Lett. 19, 91–93 (2007).
[CrossRef]

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated Surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
[CrossRef] [PubMed]

M. Kuttge, H. Kurz, J. Gómez Rivas, J. A. Sánchez-Gil, and P. Haring Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys. 101, 023707 (2007).
[CrossRef]

2006 (2)

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323 (2006).
[CrossRef]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006).
[CrossRef] [PubMed]

2005 (5)

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: Efficient mirrors,” Appl. Phys. Lett. 86, 251106 (2005).
[CrossRef]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

1997 (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Akimov, A. V.

A. L. Falk, F. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M. Jo, M. D. lukin, and H. Park, “Near-field electical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

Akjouj, A.

A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys.- Condens. Mat. 21, 375301 (2009).
[CrossRef]

Atwater, H. A.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Berini, P.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

Bingham, A. L.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91, 191122 (2007).

Boltasseva, A.

Borghs, G.

P. Neutens, P. Van Dorpe, L. Lagae, and G. Borghs, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10, 1429–1432 (2010).
[CrossRef] [PubMed]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Bouhelier, A.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated Surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
[CrossRef] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Brongersma, M. L.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Cai, W.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Camacho, R.

Chan, J.

Charbonneau, R.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

Colas des Francs, G.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated Surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Cui, J.

Y. Q. D. Gan, J. Ma, J. Cui, C. Wang, and X. Luo, “Spectrally selective splitters with metal-dielectric-metal surface plasmon waveguides,” Appl. Phys. B 95, 807–812 (2009).
[CrossRef]

De La Rue, M.

de Leon Snapp, N.

A. L. Falk, F. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M. Jo, M. D. lukin, and H. Park, “Near-field electical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

De Vlaminck, I.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Dereux, A.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated Surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Devaux, E.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006).
[CrossRef] [PubMed]

Djafari-Rouhani, B.

A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys.- Condens. Mat. 21, 375301 (2009).
[CrossRef]

Dobrzynski, L.

A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys.- Condens. Mat. 21, 375301 (2009).
[CrossRef]

Ebbesen, T.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
[CrossRef] [PubMed]

Eichenfield, M.

Falk, A. L.

A. L. Falk, F. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M. Jo, M. D. lukin, and H. Park, “Near-field electical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Fang, G.

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43, 055103 (2010).
[CrossRef]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photonics Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Gan, Y. Q. D.

Y. Q. D. Gan, J. Ma, J. Cui, C. Wang, and X. Luo, “Spectrally selective splitters with metal-dielectric-metal surface plasmon waveguides,” Appl. Phys. B 95, 807–812 (2009).
[CrossRef]

Garcia-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

George, P. A.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91, 191122 (2007).

Gómez Rivas, J.

M. Kuttge, H. Kurz, J. Gómez Rivas, J. A. Sánchez-Gil, and P. Haring Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys. 101, 023707 (2007).
[CrossRef]

Gong, Y.

Grischkowsky, D. R.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91, 191122 (2007).

Han, Z.

Z. Han, “Ultracompact plasmonic racetrack resonators in metal-insulator-metal waveguides,” Photonic Nanostruct. 8(3), 172–176 (2010).
[CrossRef]

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photonics Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Haring Bolívar, P.

M. Kuttge, H. Kurz, J. Gómez Rivas, J. A. Sánchez-Gil, and P. Haring Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys. 101, 023707 (2007).
[CrossRef]

He, M.-D.

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photonics Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Hosseini, A.

Huang, W.-Q.

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Jo, M.

A. L. Falk, F. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M. Jo, M. D. lukin, and H. Park, “Near-field electical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Johnson, N. P.

Kang, K.

A. L. Falk, F. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M. Jo, M. D. lukin, and H. Park, “Near-field electical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Kim, J.

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Kjaer, K.

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Koppens, F. L.

A. L. Falk, F. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M. Jo, M. D. lukin, and H. Park, “Near-field electical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

Kurz, H.

M. Kuttge, H. Kurz, J. Gómez Rivas, J. A. Sánchez-Gil, and P. Haring Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys. 101, 023707 (2007).
[CrossRef]

Kuttge, M.

M. Kuttge, H. Kurz, J. Gómez Rivas, J. A. Sánchez-Gil, and P. Haring Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys. 101, 023707 (2007).
[CrossRef]

Lagae, L.

P. Neutens, P. Van Dorpe, L. Lagae, and G. Borghs, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10, 1429–1432 (2010).
[CrossRef] [PubMed]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Lahoud, N.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

Laluet, J.-Y.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
[CrossRef] [PubMed]

Larsen, M. S.

Leosson, K.

Lezec, H. J.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006).
[CrossRef] [PubMed]

Liu, J.

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43, 055103 (2010).
[CrossRef]

Liu, J.-Q.

Liu, S.

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43, 055103 (2010).
[CrossRef]

Liu, X.

Liu, Y.

Lu, H.

lukin, M. D.

A. L. Falk, F. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M. Jo, M. D. lukin, and H. Park, “Near-field electical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

Luo, X.

Y. Q. D. Gan, J. Ma, J. Cui, C. Wang, and X. Luo, “Spectrally selective splitters with metal-dielectric-metal surface plasmon waveguides,” Appl. Phys. B 95, 807–812 (2009).
[CrossRef]

Ma, J.

Y. Q. D. Gan, J. Ma, J. Cui, C. Wang, and X. Luo, “Spectrally selective splitters with metal-dielectric-metal surface plasmon waveguides,” Appl. Phys. B 95, 807–812 (2009).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Manolatou, C.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91, 191122 (2007).

Mao, D.

Maradudin, A. A.

J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: Efficient mirrors,” Appl. Phys. Lett. 86, 251106 (2005).
[CrossRef]

Markey, L.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated Surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Martin-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Massoud, Y.

Mattiussi, G.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

Md Zain, A. R.

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-galery microcavity,” Nature 457, 455–459 (2009).
[CrossRef] [PubMed]

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Neutens, P.

P. Neutens, P. Van Dorpe, L. Lagae, and G. Borghs, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10, 1429–1432 (2010).
[CrossRef] [PubMed]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Nikolajsen, T.

Noual, A.

A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys.- Condens. Mat. 21, 375301 (2009).
[CrossRef]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-galery microcavity,” Nature 457, 455–459 (2009).
[CrossRef] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Painter, O.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).

Park, H.

A. L. Falk, F. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M. Jo, M. D. lukin, and H. Park, “Near-field electical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

Pennec, Y.

A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys.- Condens. Mat. 21, 375301 (2009).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Rana, F.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91, 191122 (2007).

Requicha, A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Sánchez-Gil, J. A.

J. A. Sánchez-Gil, “Distributed feedback gratings for surface-plasmon polaritons based on metal nanogroove/ridge arrays,” Opt. Lett. 32(16), 2330–2332 (2007).
[CrossRef] [PubMed]

M. Kuttge, H. Kurz, J. Gómez Rivas, J. A. Sánchez-Gil, and P. Haring Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys. 101, 023707 (2007).
[CrossRef]

J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: Efficient mirrors,” Appl. Phys. Lett. 86, 251106 (2005).
[CrossRef]

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Sorel, M.

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-galery microcavity,” Nature 457, 455–459 (2009).
[CrossRef] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-galery microcavity,” Nature 457, 455–459 (2009).
[CrossRef] [PubMed]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-galery microcavity,” Nature 457, 455–459 (2009).
[CrossRef] [PubMed]

Van Dorpe, P.

P. Neutens, P. Van Dorpe, L. Lagae, and G. Borghs, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10, 1429–1432 (2010).
[CrossRef] [PubMed]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Wang, B.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Wang, C.

Y. Q. D. Gan, J. Ma, J. Cui, C. Wang, and X. Luo, “Spectrally selective splitters with metal-dielectric-metal surface plasmon waveguides,” Appl. Phys. B 95, 807–812 (2009).
[CrossRef]

Wang, D.

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Wang, L.

Wang, L.-L.

Weeber, J.-C.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated Surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Wen, S.

White, J. S.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Yang, L.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-galery microcavity,” Nature 457, 455–459 (2009).
[CrossRef] [PubMed]

Yu, C. L.

A. L. Falk, F. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M. Jo, M. D. lukin, and H. Park, “Near-field electical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-galery microcavity,” Nature 457, 455–459 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Zhang, Y.

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43, 055103 (2010).
[CrossRef]

Zhao, H.

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43, 055103 (2010).
[CrossRef]

Zou, B. S.

Appl. Phys. B (1)

Y. Q. D. Gan, J. Ma, J. Cui, C. Wang, and X. Luo, “Spectrally selective splitters with metal-dielectric-metal surface plasmon waveguides,” Appl. Phys. B 95, 807–812 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: Efficient mirrors,” Appl. Phys. Lett. 86, 251106 (2005).
[CrossRef]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91, 191122 (2007).

IEEE Photonics Technol. Lett. (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photonics Technol. Lett. 19, 91–93 (2007).
[CrossRef]

J. Appl. Phys. (2)

M. Kuttge, H. Kurz, J. Gómez Rivas, J. A. Sánchez-Gil, and P. Haring Bolívar, “Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings,” J. Appl. Phys. 101, 023707 (2007).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. D Appl. Phys. (1)

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43, 055103 (2010).
[CrossRef]

J. Phys.- Condens. Mat. (1)

A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys.- Condens. Mat. 21, 375301 (2009).
[CrossRef]

Nano Lett. (5)

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
[CrossRef] [PubMed]

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated Surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006).
[CrossRef] [PubMed]

P. Neutens, P. Van Dorpe, L. Lagae, and G. Borghs, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10, 1429–1432 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Nat. Photonics (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Nat. Phys. (1)

A. L. Falk, F. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M. Jo, M. D. lukin, and H. Park, “Near-field electical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009).
[CrossRef]

Nature (2)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-galery microcavity,” Nature 457, 455–459 (2009).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Photonic Nanostruct. (1)

Z. Han, “Ultracompact plasmonic racetrack resonators in metal-insulator-metal waveguides,” Photonic Nanostruct. 8(3), 172–176 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Other (2)

www.comsol.com .

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic representation of the waveguide-integrated plasmonic crystal resonator. (b) Schematic representation of the transmission setup. (c) Top-view scanning electron microscope photograph of a single plasmonic crystal filter. The injection slit, detection slit and filter are indicated with respectively I, D and F. (d) Zoom-in on the filter region before the deposition of the top gold layer.

Fig. 2
Fig. 2

(a) Experimental transmission spectra through a MIM waveguide for different distances between injection and detection slit, ranging from 525 (black) to 3500 nm (gray). (b) Simulated transmission spectra for the same geometrical and optical parameters as in the experiment. (c) Calculated dispersion curve (black line) based on the fitting of the experimental results together with the light line in the dielectric (red line). (d) Effective index of the MIM waveguide.

Fig. 3
Fig. 3

(a) Schematic overview of the integrated Bragg reflector. d1 and d2 define the grating’s pitch and g1 and g2 define the etch depth of the grating. (b) Numerical simulations of the SPP transmitted power through the Bragg filter for different pitches of the grating. (c) Numerical simulations of the SPP transmitted power through the Bragg filter for different etching depths.

Fig. 4
Fig. 4

(a) Experimental measurement of the normalized transmission spectrum of 13 nm deep Bragg gratings with 12 periods for different pitches (200,220 and 250 nm). (b) Experimental measurement of the transmission spectrum of a 13 nm deep Bragg grating with a pitch of 250 nm for grating periods of 6, 8, 10 and 12.

Fig. 5
Fig. 5

Simulation of the plasmonic crystal resonator. (a) Normalized transmission spectrum of a plasmonic crystal resonator with Bragg reflectors with 4 periods of 300 nm at each side of the nanocavity, which has a length of 300 nm. As reference for normalization, the transmitted power spectrum is chosen in the case where no filter is present. (b) The normalized electric field profile is given for the three lines indicated in a). The first on is outside the stop-band, the second on the resonance and the third in the stop-band, but off-resonance. (c) Normalized transmission spectrum for a plasmonic crystal with 300 nm pitch for cavity lengths of respectively 0.85, 1.05, 1.25 and 1.45 times the pitch. Changing the cavity length clearly allows tuning of the resonant wavelength. (d) The normalized transmitted power of the plasmonic crystal for different etching depths.

Fig. 6
Fig. 6

(a) Transmission spectrum of two resonant cavities of 150 and 220 nm width inside a Bragg grating with a pitch of 200 nm. As a reference also the transmission of the grating without cavity is plotted. SEM pictures corresponding to the measured devices are shown in the inset. The high-Q resonance appears inside the bandgap (750–870 nm). (b) Simulated transmission spectrum for the two geometries used in a. (c) Transmission spectrum divided by the reference spectrum, showing the dependence of the resonant mode on the cavity length. (d) Simulated transmission spectrum for the same device geometries as in figure c.

Fig. 7
Fig. 7

(a) Schematic picture of the metallic reflector resonator filter. (b) Normalized transmitted power for a 500 nm long cavity together with the normalized electric field profiles. (c) Colorplot of the transmitted power through the filter as a function of the excitation frequency and the cavity length. (d) Transmitted power normalized to the peak value as a function of the gold barrier thickness. (e) Quality factor for the three lowest order modes as a function of the barrier width. (f) Normalized transmitted power for the three lowest order modes as a function of the barrier width.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d 1 n eff , 1 + d 2 n eff , 2 = λ b 2
Δ w g = ω c 4 π sin 1 n eff , 2 n eff , 1 n eff , 2 + n eff , 1
2 L cav k S P P + 2 ϕ = 2 π n

Metrics