Abstract

We report the use of a high-refractive-index aplanatic solid immersion lens (ASIL) in total internal reflection fluorescence (TIRF) microscopy. This new solid immersion total internal reflection fluorescence (SITIRF) microscopy allows highly confined surface imaging with a significantly reduced imaging depth compared with conventional TIRF microscopy. We explore the application of a high refractive index, low optical dispersion material zirconium dioxide in the SITIRF microscope and also introduce a novel system design which enables the SITIRF microscope to work either in the epi-fluorescence or TIRF modes with variable illumination angles. We use both synthetic and biological samples to demonstrate that the imaging depth in the SITIRF microscope can be confined to a few tens of nanometers. SITIRF microscopy has the advantages of performing highly selective imaging and high-resolution high-contrast imaging. Potential applications in biological imaging and future developments of SITIRF microscopy are proposed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
    [CrossRef]
  2. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
    [CrossRef]
  3. J. Zhang, C. W. See, and M. G. Somekh, “Imaging performance of widefield solid immersion lens microscopy,” Appl. Opt. 46(20), 4202–4208 (2007).
    [CrossRef] [PubMed]
  4. L. Wang, M. C. Pitter, and M. G. Somekh, “Wide-field high-resolution solid immersion fluorescence microscopy applying an aplanatic solid immersion lens,” Appl. Opt. 49(31), 6160–6169 (2010).
    [CrossRef]
  5. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
    [CrossRef]
  6. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150 (2000).
    [CrossRef]
  7. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [CrossRef] [PubMed]
  8. L. Wang, M. C. Pitter, and M. G. Somekh, “Wide-field high-resolution structured illumination solid immersion fluorescence microscopy,” Opt. Lett. 36(15), 2794–2796 (2011).
    [CrossRef] [PubMed]
  9. A. L. Stout and D. Axelrod, “Evanescent field excitation of fluorescence by epi-illumination microscopy,” Appl. Opt. 28(24), 5237–5242 (1989).
    [CrossRef] [PubMed]
  10. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
    [CrossRef] [PubMed]
  11. J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng. 10(1), 311–338 (2008).
    [CrossRef] [PubMed]
  12. T. Yanagida, Y. Sako, and S. Minoghchi, “Single-molecule imaging of EGFR signalling on the surface of living cells,” Nat. Cell Biol. 2(3), 168–172 (2000).
    [CrossRef] [PubMed]
  13. J. Z. Rappoport and S. M. Simon, “Real-time analysis of clathrin-mediated endocytosis during cell migration,” J. Cell Sci. 116(5), 847–855 (2003).
    [CrossRef] [PubMed]
  14. D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
    [CrossRef] [PubMed]
  15. P. Török and F. J. Kao, Optical Imaging and Microscopy: Techniques and Advanced Systems,87 of Springer series in optical sciences (Springer, 2007).
  16. C. Gell, M. Berndt, J. Enderlein, and S. Diez, “TIRF microscopy evanescent field calibration using tilted fluorescent microtubules,” J. Microsc. 234(1), 38–46 (2009).
    [CrossRef] [PubMed]
  17. A. L. Mattheyses and D. Axelrod, “Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence,” J. Biomed. Opt. 11(1), 014006 (2006).
    [CrossRef] [PubMed]
  18. J. Enderlein, T. Ruckstuhl, and S. Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt. 38(4), 724–732 (1999).
    [CrossRef] [PubMed]
  19. R. Wannemacher, A. Pack, and M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68(2), 225–232 (1999).
    [CrossRef]
  20. C. Liu, T. Weigel, and G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185(4-6), 249–261 (2000).
    [CrossRef]
  21. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
    [CrossRef]
  22. M. Liberton, R. Howard Berg, J. Heuser, R. Roth, and H. B. Pakrasi, “Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803,” Protoplasma 227(2-4), 129–138 (2006).
    [CrossRef] [PubMed]
  23. D. Schneider, E. Fuhrmann, I. Scholz, W. R. Hess, and P. L. Graumann, “Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes,” BMC Cell Biol. 39(1), 8–39 (2007).
    [CrossRef] [PubMed]
  24. C. Aldridge, E. Spence, M. A. Kirkilionis, L. Frigerio, and C. Robinson, “Tat-dependent targeting of Rieske iron-sulphur proteins to both the plasma and thylakoid membranes in the cyanobacterium Synechocystis PCC6803,” Mol. Microbiol. 70(1), 140–150 (2008).
    [CrossRef] [PubMed]
  25. D. Woitzik, J. Weckesser, and U. J. Jurgens, “Isolation and characterization of cell-wall components of the unicellular cyanobacterium Synechococcus sp. PCC 6307,” J. Gen. Microbiol. 134, 619–627 (1988).
  26. J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12(1), 014010 (2007).
    [CrossRef] [PubMed]
  27. I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and thermal characterization of natural (Sepia officinalis) melanin,” Photochem. Photobiol. 59(4), 455–462 (1994).
    [CrossRef] [PubMed]
  28. J. A. Steyer and W. Almers, “Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy,” Biophys. J. 76(4), 2262–2271 (1999).
    [CrossRef] [PubMed]
  29. S. Saffarian and T. Kirchhausen, “Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane,” Biophys. J. 94(6), 2333–2342 (2008).
    [CrossRef] [PubMed]
  30. K. Stock, R. Sailer, W. S. L. Strauss, M. Lyttek, R. Steiner, and H. Schneckenburger, “Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device,” J. Microsc. 211(1), 19–29 (2003).
    [CrossRef] [PubMed]
  31. G. D. Byrne, M. C. Pitter, J. Zhang, F. H. Falcone, S. Stolnik, and M. G. Somekh, “Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles,” J. Microsc. 231(1), 168–179 (2008).
    [CrossRef] [PubMed]

2011

2010

2009

C. Gell, M. Berndt, J. Enderlein, and S. Diez, “TIRF microscopy evanescent field calibration using tilted fluorescent microtubules,” J. Microsc. 234(1), 38–46 (2009).
[CrossRef] [PubMed]

2008

C. Aldridge, E. Spence, M. A. Kirkilionis, L. Frigerio, and C. Robinson, “Tat-dependent targeting of Rieske iron-sulphur proteins to both the plasma and thylakoid membranes in the cyanobacterium Synechocystis PCC6803,” Mol. Microbiol. 70(1), 140–150 (2008).
[CrossRef] [PubMed]

J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng. 10(1), 311–338 (2008).
[CrossRef] [PubMed]

S. Saffarian and T. Kirchhausen, “Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane,” Biophys. J. 94(6), 2333–2342 (2008).
[CrossRef] [PubMed]

G. D. Byrne, M. C. Pitter, J. Zhang, F. H. Falcone, S. Stolnik, and M. G. Somekh, “Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles,” J. Microsc. 231(1), 168–179 (2008).
[CrossRef] [PubMed]

2007

J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12(1), 014010 (2007).
[CrossRef] [PubMed]

D. Schneider, E. Fuhrmann, I. Scholz, W. R. Hess, and P. L. Graumann, “Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes,” BMC Cell Biol. 39(1), 8–39 (2007).
[CrossRef] [PubMed]

J. Zhang, C. W. See, and M. G. Somekh, “Imaging performance of widefield solid immersion lens microscopy,” Appl. Opt. 46(20), 4202–4208 (2007).
[CrossRef] [PubMed]

2006

M. Liberton, R. Howard Berg, J. Heuser, R. Roth, and H. B. Pakrasi, “Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803,” Protoplasma 227(2-4), 129–138 (2006).
[CrossRef] [PubMed]

A. L. Mattheyses and D. Axelrod, “Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence,” J. Biomed. Opt. 11(1), 014006 (2006).
[CrossRef] [PubMed]

2003

J. Z. Rappoport and S. M. Simon, “Real-time analysis of clathrin-mediated endocytosis during cell migration,” J. Cell Sci. 116(5), 847–855 (2003).
[CrossRef] [PubMed]

K. Stock, R. Sailer, W. S. L. Strauss, M. Lyttek, R. Steiner, and H. Schneckenburger, “Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device,” J. Microsc. 211(1), 19–29 (2003).
[CrossRef] [PubMed]

2000

T. Yanagida, Y. Sako, and S. Minoghchi, “Single-molecule imaging of EGFR signalling on the surface of living cells,” Nat. Cell Biol. 2(3), 168–172 (2000).
[CrossRef] [PubMed]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150 (2000).
[CrossRef]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[CrossRef] [PubMed]

C. Liu, T. Weigel, and G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185(4-6), 249–261 (2000).
[CrossRef]

1999

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

R. Wannemacher, A. Pack, and M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68(2), 225–232 (1999).
[CrossRef]

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

J. A. Steyer and W. Almers, “Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy,” Biophys. J. 76(4), 2262–2271 (1999).
[CrossRef] [PubMed]

J. Enderlein, T. Ruckstuhl, and S. Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt. 38(4), 724–732 (1999).
[CrossRef] [PubMed]

1994

I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and thermal characterization of natural (Sepia officinalis) melanin,” Photochem. Photobiol. 59(4), 455–462 (1994).
[CrossRef] [PubMed]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

1990

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[CrossRef]

1989

1988

D. Woitzik, J. Weckesser, and U. J. Jurgens, “Isolation and characterization of cell-wall components of the unicellular cyanobacterium Synechococcus sp. PCC 6307,” J. Gen. Microbiol. 134, 619–627 (1988).

1984

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[CrossRef] [PubMed]

1981

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
[CrossRef] [PubMed]

Agard, D. A.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150 (2000).
[CrossRef]

Aldridge, C.

C. Aldridge, E. Spence, M. A. Kirkilionis, L. Frigerio, and C. Robinson, “Tat-dependent targeting of Rieske iron-sulphur proteins to both the plasma and thylakoid membranes in the cyanobacterium Synechocystis PCC6803,” Mol. Microbiol. 70(1), 140–150 (2008).
[CrossRef] [PubMed]

Almers, W.

J. A. Steyer and W. Almers, “Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy,” Biophys. J. 76(4), 2262–2271 (1999).
[CrossRef] [PubMed]

Anderson, R. R.

I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and thermal characterization of natural (Sepia officinalis) melanin,” Photochem. Photobiol. 59(4), 455–462 (1994).
[CrossRef] [PubMed]

Axelrod, D.

A. L. Mattheyses and D. Axelrod, “Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence,” J. Biomed. Opt. 11(1), 014006 (2006).
[CrossRef] [PubMed]

A. L. Stout and D. Axelrod, “Evanescent field excitation of fluorescence by epi-illumination microscopy,” Appl. Opt. 28(24), 5237–5242 (1989).
[CrossRef] [PubMed]

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[CrossRef] [PubMed]

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
[CrossRef] [PubMed]

Berndt, M.

C. Gell, M. Berndt, J. Enderlein, and S. Diez, “TIRF microscopy evanescent field calibration using tilted fluorescent microtubules,” J. Microsc. 234(1), 38–46 (2009).
[CrossRef] [PubMed]

Burghardt, T. P.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[CrossRef] [PubMed]

Byrne, G. D.

G. D. Byrne, M. C. Pitter, J. Zhang, F. H. Falcone, S. Stolnik, and M. G. Somekh, “Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles,” J. Microsc. 231(1), 168–179 (2008).
[CrossRef] [PubMed]

Cottrell, W. J.

J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12(1), 014010 (2007).
[CrossRef] [PubMed]

Cremer, C.

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

Diez, S.

C. Gell, M. Berndt, J. Enderlein, and S. Diez, “TIRF microscopy evanescent field calibration using tilted fluorescent microtubules,” J. Microsc. 234(1), 38–46 (2009).
[CrossRef] [PubMed]

Enderlein, J.

C. Gell, M. Berndt, J. Enderlein, and S. Diez, “TIRF microscopy evanescent field calibration using tilted fluorescent microtubules,” J. Microsc. 234(1), 38–46 (2009).
[CrossRef] [PubMed]

J. Enderlein, T. Ruckstuhl, and S. Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt. 38(4), 724–732 (1999).
[CrossRef] [PubMed]

Falcone, F. H.

G. D. Byrne, M. C. Pitter, J. Zhang, F. H. Falcone, S. Stolnik, and M. G. Somekh, “Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles,” J. Microsc. 231(1), 168–179 (2008).
[CrossRef] [PubMed]

Feke, G. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

Forstner, M. B.

J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng. 10(1), 311–338 (2008).
[CrossRef] [PubMed]

Foster, T. H.

J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12(1), 014010 (2007).
[CrossRef] [PubMed]

Frigerio, L.

C. Aldridge, E. Spence, M. A. Kirkilionis, L. Frigerio, and C. Robinson, “Tat-dependent targeting of Rieske iron-sulphur proteins to both the plasma and thylakoid membranes in the cyanobacterium Synechocystis PCC6803,” Mol. Microbiol. 70(1), 140–150 (2008).
[CrossRef] [PubMed]

Fuhrmann, E.

D. Schneider, E. Fuhrmann, I. Scholz, W. R. Hess, and P. L. Graumann, “Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes,” BMC Cell Biol. 39(1), 8–39 (2007).
[CrossRef] [PubMed]

Gell, C.

C. Gell, M. Berndt, J. Enderlein, and S. Diez, “TIRF microscopy evanescent field calibration using tilted fluorescent microtubules,” J. Microsc. 234(1), 38–46 (2009).
[CrossRef] [PubMed]

Ghislain, L. P.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

Graumann, P. L.

D. Schneider, E. Fuhrmann, I. Scholz, W. R. Hess, and P. L. Graumann, “Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes,” BMC Cell Biol. 39(1), 8–39 (2007).
[CrossRef] [PubMed]

Grober, R. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

Groves, J. T.

J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng. 10(1), 311–338 (2008).
[CrossRef] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150 (2000).
[CrossRef]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[CrossRef] [PubMed]

Heintzmann, R.

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

Hess, W. R.

D. Schneider, E. Fuhrmann, I. Scholz, W. R. Hess, and P. L. Graumann, “Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes,” BMC Cell Biol. 39(1), 8–39 (2007).
[CrossRef] [PubMed]

Heuser, J.

M. Liberton, R. Howard Berg, J. Heuser, R. Roth, and H. B. Pakrasi, “Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803,” Protoplasma 227(2-4), 129–138 (2006).
[CrossRef] [PubMed]

Howard Berg, R.

M. Liberton, R. Howard Berg, J. Heuser, R. Roth, and H. B. Pakrasi, “Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803,” Protoplasma 227(2-4), 129–138 (2006).
[CrossRef] [PubMed]

Jurgens, U. J.

D. Woitzik, J. Weckesser, and U. J. Jurgens, “Isolation and characterization of cell-wall components of the unicellular cyanobacterium Synechococcus sp. PCC 6307,” J. Gen. Microbiol. 134, 619–627 (1988).

Kino, G. S.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[CrossRef]

Kirchhausen, T.

S. Saffarian and T. Kirchhausen, “Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane,” Biophys. J. 94(6), 2333–2342 (2008).
[CrossRef] [PubMed]

Kirkilionis, M. A.

C. Aldridge, E. Spence, M. A. Kirkilionis, L. Frigerio, and C. Robinson, “Tat-dependent targeting of Rieske iron-sulphur proteins to both the plasma and thylakoid membranes in the cyanobacterium Synechocystis PCC6803,” Mol. Microbiol. 70(1), 140–150 (2008).
[CrossRef] [PubMed]

Liberton, M.

M. Liberton, R. Howard Berg, J. Heuser, R. Roth, and H. B. Pakrasi, “Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803,” Protoplasma 227(2-4), 129–138 (2006).
[CrossRef] [PubMed]

Liu, C.

C. Liu, T. Weigel, and G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185(4-6), 249–261 (2000).
[CrossRef]

Lyttek, M.

K. Stock, R. Sailer, W. S. L. Strauss, M. Lyttek, R. Steiner, and H. Schneckenburger, “Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device,” J. Microsc. 211(1), 19–29 (2003).
[CrossRef] [PubMed]

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[CrossRef]

Mattheyses, A. L.

A. L. Mattheyses and D. Axelrod, “Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence,” J. Biomed. Opt. 11(1), 014006 (2006).
[CrossRef] [PubMed]

Minoghchi, S.

T. Yanagida, Y. Sako, and S. Minoghchi, “Single-molecule imaging of EGFR signalling on the surface of living cells,” Nat. Cell Biol. 2(3), 168–172 (2000).
[CrossRef] [PubMed]

Pack, A.

R. Wannemacher, A. Pack, and M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68(2), 225–232 (1999).
[CrossRef]

Pakrasi, H. B.

M. Liberton, R. Howard Berg, J. Heuser, R. Roth, and H. B. Pakrasi, “Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803,” Protoplasma 227(2-4), 129–138 (2006).
[CrossRef] [PubMed]

Parthasarathy, R.

J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng. 10(1), 311–338 (2008).
[CrossRef] [PubMed]

Pitter, M. C.

Quinten, M.

R. Wannemacher, A. Pack, and M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68(2), 225–232 (1999).
[CrossRef]

Rappoport, J. Z.

J. Z. Rappoport and S. M. Simon, “Real-time analysis of clathrin-mediated endocytosis during cell migration,” J. Cell Sci. 116(5), 847–855 (2003).
[CrossRef] [PubMed]

Robinson, C.

C. Aldridge, E. Spence, M. A. Kirkilionis, L. Frigerio, and C. Robinson, “Tat-dependent targeting of Rieske iron-sulphur proteins to both the plasma and thylakoid membranes in the cyanobacterium Synechocystis PCC6803,” Mol. Microbiol. 70(1), 140–150 (2008).
[CrossRef] [PubMed]

Roth, R.

M. Liberton, R. Howard Berg, J. Heuser, R. Roth, and H. B. Pakrasi, “Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803,” Protoplasma 227(2-4), 129–138 (2006).
[CrossRef] [PubMed]

Ruckstuhl, T.

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Saffarian, S.

S. Saffarian and T. Kirchhausen, “Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane,” Biophys. J. 94(6), 2333–2342 (2008).
[CrossRef] [PubMed]

Sailer, R.

K. Stock, R. Sailer, W. S. L. Strauss, M. Lyttek, R. Steiner, and H. Schneckenburger, “Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device,” J. Microsc. 211(1), 19–29 (2003).
[CrossRef] [PubMed]

Sako, Y.

T. Yanagida, Y. Sako, and S. Minoghchi, “Single-molecule imaging of EGFR signalling on the surface of living cells,” Nat. Cell Biol. 2(3), 168–172 (2000).
[CrossRef] [PubMed]

Schneckenburger, H.

K. Stock, R. Sailer, W. S. L. Strauss, M. Lyttek, R. Steiner, and H. Schneckenburger, “Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device,” J. Microsc. 211(1), 19–29 (2003).
[CrossRef] [PubMed]

Schneider, D.

D. Schneider, E. Fuhrmann, I. Scholz, W. R. Hess, and P. L. Graumann, “Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes,” BMC Cell Biol. 39(1), 8–39 (2007).
[CrossRef] [PubMed]

Scholz, I.

D. Schneider, E. Fuhrmann, I. Scholz, W. R. Hess, and P. L. Graumann, “Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes,” BMC Cell Biol. 39(1), 8–39 (2007).
[CrossRef] [PubMed]

Schweiger, G.

C. Liu, T. Weigel, and G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185(4-6), 249–261 (2000).
[CrossRef]

Sedat, J. W.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150 (2000).
[CrossRef]

See, C. W.

Seeger, S.

Simon, S. M.

J. Z. Rappoport and S. M. Simon, “Real-time analysis of clathrin-mediated endocytosis during cell migration,” J. Cell Sci. 116(5), 847–855 (2003).
[CrossRef] [PubMed]

Somekh, M. G.

Spence, E.

C. Aldridge, E. Spence, M. A. Kirkilionis, L. Frigerio, and C. Robinson, “Tat-dependent targeting of Rieske iron-sulphur proteins to both the plasma and thylakoid membranes in the cyanobacterium Synechocystis PCC6803,” Mol. Microbiol. 70(1), 140–150 (2008).
[CrossRef] [PubMed]

Steiner, R.

K. Stock, R. Sailer, W. S. L. Strauss, M. Lyttek, R. Steiner, and H. Schneckenburger, “Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device,” J. Microsc. 211(1), 19–29 (2003).
[CrossRef] [PubMed]

Steyer, J. A.

J. A. Steyer and W. Almers, “Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy,” Biophys. J. 76(4), 2262–2271 (1999).
[CrossRef] [PubMed]

Stock, K.

K. Stock, R. Sailer, W. S. L. Strauss, M. Lyttek, R. Steiner, and H. Schneckenburger, “Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device,” J. Microsc. 211(1), 19–29 (2003).
[CrossRef] [PubMed]

Stolnik, S.

G. D. Byrne, M. C. Pitter, J. Zhang, F. H. Falcone, S. Stolnik, and M. G. Somekh, “Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles,” J. Microsc. 231(1), 168–179 (2008).
[CrossRef] [PubMed]

Stout, A. L.

Strauss, W. S. L.

K. Stock, R. Sailer, W. S. L. Strauss, M. Lyttek, R. Steiner, and H. Schneckenburger, “Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device,” J. Microsc. 211(1), 19–29 (2003).
[CrossRef] [PubMed]

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Thompson, N. L.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[CrossRef] [PubMed]

Vitkin, I. A.

I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and thermal characterization of natural (Sepia officinalis) melanin,” Photochem. Photobiol. 59(4), 455–462 (1994).
[CrossRef] [PubMed]

Wang, L.

Wannemacher, R.

R. Wannemacher, A. Pack, and M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68(2), 225–232 (1999).
[CrossRef]

Weckesser, J.

D. Woitzik, J. Weckesser, and U. J. Jurgens, “Isolation and characterization of cell-wall components of the unicellular cyanobacterium Synechococcus sp. PCC 6307,” J. Gen. Microbiol. 134, 619–627 (1988).

Weigel, T.

C. Liu, T. Weigel, and G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185(4-6), 249–261 (2000).
[CrossRef]

Wilson, B. C.

I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and thermal characterization of natural (Sepia officinalis) melanin,” Photochem. Photobiol. 59(4), 455–462 (1994).
[CrossRef] [PubMed]

Wilson, J. D.

J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12(1), 014010 (2007).
[CrossRef] [PubMed]

Woitzik, D.

D. Woitzik, J. Weckesser, and U. J. Jurgens, “Isolation and characterization of cell-wall components of the unicellular cyanobacterium Synechococcus sp. PCC 6307,” J. Gen. Microbiol. 134, 619–627 (1988).

Woolsey, J.

I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and thermal characterization of natural (Sepia officinalis) melanin,” Photochem. Photobiol. 59(4), 455–462 (1994).
[CrossRef] [PubMed]

Wu, Q.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

Yanagida, T.

T. Yanagida, Y. Sako, and S. Minoghchi, “Single-molecule imaging of EGFR signalling on the surface of living cells,” Nat. Cell Biol. 2(3), 168–172 (2000).
[CrossRef] [PubMed]

Zhang, J.

G. D. Byrne, M. C. Pitter, J. Zhang, F. H. Falcone, S. Stolnik, and M. G. Somekh, “Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles,” J. Microsc. 231(1), 168–179 (2008).
[CrossRef] [PubMed]

J. Zhang, C. W. See, and M. G. Somekh, “Imaging performance of widefield solid immersion lens microscopy,” Appl. Opt. 46(20), 4202–4208 (2007).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng.

J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng. 10(1), 311–338 (2008).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Bioeng.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

R. Wannemacher, A. Pack, and M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68(2), 225–232 (1999).
[CrossRef]

Appl. Phys. Lett.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Biophys. J.

J. A. Steyer and W. Almers, “Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy,” Biophys. J. 76(4), 2262–2271 (1999).
[CrossRef] [PubMed]

S. Saffarian and T. Kirchhausen, “Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane,” Biophys. J. 94(6), 2333–2342 (2008).
[CrossRef] [PubMed]

BMC Cell Biol.

D. Schneider, E. Fuhrmann, I. Scholz, W. R. Hess, and P. L. Graumann, “Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes,” BMC Cell Biol. 39(1), 8–39 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt.

A. L. Mattheyses and D. Axelrod, “Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence,” J. Biomed. Opt. 11(1), 014006 (2006).
[CrossRef] [PubMed]

J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12(1), 014010 (2007).
[CrossRef] [PubMed]

J. Cell Biol.

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
[CrossRef] [PubMed]

J. Cell Sci.

J. Z. Rappoport and S. M. Simon, “Real-time analysis of clathrin-mediated endocytosis during cell migration,” J. Cell Sci. 116(5), 847–855 (2003).
[CrossRef] [PubMed]

J. Gen. Microbiol.

D. Woitzik, J. Weckesser, and U. J. Jurgens, “Isolation and characterization of cell-wall components of the unicellular cyanobacterium Synechococcus sp. PCC 6307,” J. Gen. Microbiol. 134, 619–627 (1988).

J. Microsc.

K. Stock, R. Sailer, W. S. L. Strauss, M. Lyttek, R. Steiner, and H. Schneckenburger, “Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device,” J. Microsc. 211(1), 19–29 (2003).
[CrossRef] [PubMed]

G. D. Byrne, M. C. Pitter, J. Zhang, F. H. Falcone, S. Stolnik, and M. G. Somekh, “Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles,” J. Microsc. 231(1), 168–179 (2008).
[CrossRef] [PubMed]

C. Gell, M. Berndt, J. Enderlein, and S. Diez, “TIRF microscopy evanescent field calibration using tilted fluorescent microtubules,” J. Microsc. 234(1), 38–46 (2009).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[CrossRef] [PubMed]

Mol. Microbiol.

C. Aldridge, E. Spence, M. A. Kirkilionis, L. Frigerio, and C. Robinson, “Tat-dependent targeting of Rieske iron-sulphur proteins to both the plasma and thylakoid membranes in the cyanobacterium Synechocystis PCC6803,” Mol. Microbiol. 70(1), 140–150 (2008).
[CrossRef] [PubMed]

Nat. Cell Biol.

T. Yanagida, Y. Sako, and S. Minoghchi, “Single-molecule imaging of EGFR signalling on the surface of living cells,” Nat. Cell Biol. 2(3), 168–172 (2000).
[CrossRef] [PubMed]

Opt. Commun.

C. Liu, T. Weigel, and G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185(4-6), 249–261 (2000).
[CrossRef]

Opt. Lett.

Photochem. Photobiol.

I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and thermal characterization of natural (Sepia officinalis) melanin,” Photochem. Photobiol. 59(4), 455–462 (1994).
[CrossRef] [PubMed]

Proc. SPIE

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE 3919, 141–150 (2000).
[CrossRef]

Protoplasma

M. Liberton, R. Howard Berg, J. Heuser, R. Roth, and H. B. Pakrasi, “Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803,” Protoplasma 227(2-4), 129–138 (2006).
[CrossRef] [PubMed]

Other

P. Török and F. J. Kao, Optical Imaging and Microscopy: Techniques and Advanced Systems,87 of Springer series in optical sciences (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

TIR illumination scheme. When the incident angle of the incoming wave is larger than the critical angle θc, the wave is totally internally reflected. The evanescent wave propagates in the x direction and decays exponentially in the low-index (n2) material in the z direction.

Fig. 2
Fig. 2

Simulated intensity decays along the z direction from the ASIL-air (blue curves) and ASIL-water (red curves) interfaces with illumination NA values of 2.2 and 1.45. Theoretical penetration depths are also marked by circles in each case. An illumination wavelength of 473 nm is considered.

Fig. 3
Fig. 3

Spot diagrams showing PSF with Airy disk reference at the central wavelength (black circle) of 473 nm for an isotropic point source at the aplanatic point of a 3 mm ZrO2 ASIL. (a) The PSF for ASIL imaging for three wavelengths: 468 (blue crosses), 478 nm (red squares) and 473 nm (green crosses) which is focused at the paraxial focal point and therefore forms a diffraction-limited image corresponding to the Airy disk. (b) The PSF for ASIL imaging for three wavelengths: 463 (blue crosses), 483 nm (red squares) and 473 nm (green dots) which is focused at the paraxial focal point and therefore forms a nearly diffraction-limited image corresponding to the Airy disk.

Fig. 4
Fig. 4

Schematic of the SITIRF microscope system. A mirror and a steering lens were mounted on a motorized translation stage to change the incident illumination angle. The dark blue/red shading illustrates the Köhler illumination beam from either of the two lasers, the light blue shading illustrates LED illumination beam, the green shading indicates the fluorescent light forming the specimen images, and the red dashed lines represent the fluorescent light forming the BFP images.

Fig. 5
Fig. 5

Images of 1 µm diameter fluorescent beads in (a) epi-fluorescence mode, (b) conventional NA TIRF mode with an illumination NA of 1.45, and (c) high NA TIRF mode with an illumination NA of 2.2. 3D surface plots (d, e, f) of a single bead, as indicated by the dashed box, in different modes are shown on the right-hand panel.

Fig. 6
Fig. 6

Geometric model of a fluorescent bead.

Fig. 7
Fig. 7

BFP images captured with 1 µm fluorescent bead samples in (a) epi-fluorescence mode, (b) conventional NA TIRF mode with illumination NA of 1.45, and (c) high NA TIRF mode with illumination NA of 2.2. The yellow dashed circles indicate the full NA of the system which is 2.2; the radial positions of the focused beam in each case are indicated by the yellow leader lines.

Fig. 8
Fig. 8

Images of a mixture of 40 nm and 1 µm fluorescent beads in (a, e) bright-field mode (b, f) epi-fluorescence mode, (c, g) conventional NA TIRF mode with an illumination NA of 1.45, and (d, h) high NA TIRF mode with an illumination NA of 2.2.

Fig. 9
Fig. 9

Images of Synechocystis cells expressing PetC3-GFP in (a) bright-field mode, epi-fluorescence mode in (b) GFP channel, (c) phycocyanin channel, and (d) by merging two channels; in conventional NA TIRF mode with illumination NA of 1.45 in (e) GFP channel, (f) phycocyanin channel, and (g) by merging two channels; and high NA TIRF mode with illumination NA of 2.2 in (h) GFP channel, (i)phycocyanin channel, and (j) by merging two channels. Scale bar: 2 µm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

θ c =arcsin( n 2 / n 1 )
I(z)=I(0)exp(z/d)
d= λ 4π n 1 2 sin 2 θ n 2 2
d= λ 4π N A ill 2 n 2 2
r spot = f eff N A ill
f eff = f n 2
AB ¯ = OB ¯ OC ¯ 2 AC ¯ 2 =R R 2 r eff 2
PSF= Δ x 2 observed Δ x 2 bead

Metrics