Abstract

Advanced modulation schemes together with coherent detection and digital signal processing has enabled the next generation high-bandwidth optical communication systems. One of the key advantages of coherent detection is its superior receiver sensitivity compared to direct detection receivers due to the gain provided by the local oscillator (LO). In unamplified applications, such as metro and edge networks, the ultimate receiver sensitivity is dictated by the amount of shot noise, thermal noise, and the residual beating of the local oscillator with relative intensity noise (LO-RIN). We show that the best sensitivity is achieved when the thermal noise is balanced with the residual LO-RIN beat noise, which results in an optimum LO power. The impact of thermal noise from the transimpedance amplifier (TIA), the RIN from the LO, and the common mode rejection ratio (CMRR) from a balanced photodiode are individually analyzed via analytical models and compared to numerical simulations. The analytical model results match well with those of the numerical simulations, providing a simplified method to quantify the impact of receiver design tradeoffs. For a practical 100Gb/s integrated coherent receiver with 7% FEC overhead, we show that an optimum receiver sensitivity of −33dBm can be achieved at GFEC cliff of 8.55E-5 if the LO power is optimized at 11dBm. We also discuss a potential method to monitor the imperfections of a balanced and integrated coherent receiver.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [CrossRef]
  2. M. Birk, P. Gerard, R. Curto, L. E. Nelson, X. Zhou, P. Magill, T. J. Schmidt, C. Malouin, B. Zhang, E. Ibragimov, S. Khatana, M. Glavanovic, R. Lofland, R. Marcoccia, R. Saunders, G. Nicholl, M. Nowell, and F. Forghieri, “Real-time single-carrier coherent 100 Gb/s PM-QPSK field trial,” J. Lightwave Technol. 29(4), 417–425 (2011).
    [CrossRef]
  3. G. P. Agrawal, Fiber-optic Communication Systems, 3rd ed. (John Wiley & Sons, Inc., 2002).
  4. K. Kikuchi, “Coherent optical communication systems,” in Optical Fiber Telecommunications, V, I. P. Kaminow, T. Li and A. E. Willner, eds. (Elsevier, 2008), Vol. B. Chap. 3.
  5. C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
    [CrossRef]
  6. Y. Painchaud, M. Poulin, M. Morin, and M. Têtu, “Performance of balanced detection in a coherent receiver,” Opt. Express 17(5), 3659–3672 (2009).
    [CrossRef] [PubMed]
  7. A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Dynamic range of single-ended detection receivers for 100 GE coherent PM-QPSK,” IEEE Photon. Technol. Lett. 20(15), 1281–1283 (2008).
    [CrossRef]
  8. B. Razavi, Design of Integrated Circuits for Optical Communication Systems (McGraw-Hill, 2003).
  9. OIF IA # OIF-DPC-RX-01.0, “Implementation agreement for integrated dual polarization intradyne coherent receivers,” April 16, 2010.
  10. C. Xie, “Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation,” in Proceedings of OFC/NFOEC, paper OMT4 (2009).

2011 (2)

M. Birk, P. Gerard, R. Curto, L. E. Nelson, X. Zhou, P. Magill, T. J. Schmidt, C. Malouin, B. Zhang, E. Ibragimov, S. Khatana, M. Glavanovic, R. Lofland, R. Marcoccia, R. Saunders, G. Nicholl, M. Nowell, and F. Forghieri, “Real-time single-carrier coherent 100 Gb/s PM-QPSK field trial,” J. Lightwave Technol. 29(4), 417–425 (2011).
[CrossRef]

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

2010 (1)

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

2009 (1)

2008 (1)

A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Dynamic range of single-ended detection receivers for 100 GE coherent PM-QPSK,” IEEE Photon. Technol. Lett. 20(15), 1281–1283 (2008).
[CrossRef]

Birk, M.

Buhl, L. L.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Carena, A.

A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Dynamic range of single-ended detection receivers for 100 GE coherent PM-QPSK,” IEEE Photon. Technol. Lett. 20(15), 1281–1283 (2008).
[CrossRef]

Chandrasekhar, S.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Chen, Y. K.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Curri, V.

A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Dynamic range of single-ended detection receivers for 100 GE coherent PM-QPSK,” IEEE Photon. Technol. Lett. 20(15), 1281–1283 (2008).
[CrossRef]

Curto, R.

Doerr, C. R.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Forghieri, F.

Gerard, P.

Glavanovic, M.

Houtsma, V.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Hu, T.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Ibragimov, E.

Khatana, S.

Lofland, R.

Magill, P.

Malouin, C.

Marcoccia, R.

Morin, M.

Neilson, D. T.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Nelson, L. E.

Nicholl, G.

Nowell, M.

Painchaud, Y.

Poggiolini, P.

A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Dynamic range of single-ended detection receivers for 100 GE coherent PM-QPSK,” IEEE Photon. Technol. Lett. 20(15), 1281–1283 (2008).
[CrossRef]

Poulin, M.

Sauer, N. J.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Saunders, R.

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

Schmidt, T. J.

Têtu, M.

Weimann, N.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Winzer, P. J.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Zhang, B.

Zhang, L.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Zhou, X.

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Dynamic range of single-ended detection receivers for 100 GE coherent PM-QPSK,” IEEE Photon. Technol. Lett. 20(15), 1281–1283 (2008).
[CrossRef]

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Other (5)

G. P. Agrawal, Fiber-optic Communication Systems, 3rd ed. (John Wiley & Sons, Inc., 2002).

K. Kikuchi, “Coherent optical communication systems,” in Optical Fiber Telecommunications, V, I. P. Kaminow, T. Li and A. E. Willner, eds. (Elsevier, 2008), Vol. B. Chap. 3.

B. Razavi, Design of Integrated Circuits for Optical Communication Systems (McGraw-Hill, 2003).

OIF IA # OIF-DPC-RX-01.0, “Implementation agreement for integrated dual polarization intradyne coherent receivers,” April 16, 2010.

C. Xie, “Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation,” in Proceedings of OFC/NFOEC, paper OMT4 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram of a fully-integrated optical coherent receiver. LO: local oscillator; PBS: polarization beam splitter; OFE: optical front end, which contains two 90 degree hybrid mixers and four sets of balanced photodiodes. TIA: transimpedance amplifier.

Fig. 2
Fig. 2

(a) CMRR as a function of frequency for various P/N skew levels. Here, the power splitting ratio is assumed to be equal between P and N ports to magnify the frequency dependent nature of the CMRR. (b) Effective CMRR value as a function of P/N skew. The effective value is extracted from (a) at 8GHz for each skew level.

Fig. 3
Fig. 3

(a) Numerical simulation of Q Penalty as a function of LO power for various LO RIN values. (b) Receiver sensitivity degradation versus RIN for various LO powers. The numerical simulation and analytical equations are seen to be in good agreement.

Fig. 4
Fig. 4

(a) Numerical simulation of Q Penalty as a function of LO power for various TIA thermal values. (b) Receiver sensitivity degradation versus differential TIA input-referred noise current density for various LO powers. The numerical simulation and analytical equations are seen to be in good agreement.

Fig. 5
Fig. 5

(a) Analytical model predictions on the coherent receiver sensitivity at 8.55e-5 BER as a contour plot against CMRR and LO power. (b) Numerical simulations on the coherent receiver sensitivity at 8.55e-5 BER as a contour plot against CMRR and LO power.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

σ shot 2 =2*q*(* P + I d )*Δf
σ TIA 2 = ( i TIA ) 2 *Δf
σ RIN 2 = 2 * P LO 2 *(RIN)*2Δf
CMRR(f)= | α 2 e j2πfτ α 2 +1 | 2
CMRR(f)=20*log10[sin(2πfτ)]
I p (t)= | [ E SIG (t)]+[ E LO + E LO_IN (t)] | 2 + i TIA + i shot
I n (t+τ)= | [ E SIG (t+τ)][ E LO + E LO_IN (t+τ)] | 2 + i TIA + i shot
SN R Rx_out = 1 2 *16* 2 * P LO * P SIG σ TIA 2 +16* 2 * P LO * P LO_IN *CMRR+ σ shot 2
SN R Rx_in = P s σ TIA_Rx_in 2 + σ RIN_Rx_in 2 + σ shot_Rx_in 2
SN R Rx_in = P s 8* ( i TIA ) 2 *Δf*E L 2 / 2 P l + P l *2*(RIN*2*Δf)*CMRR+2*q*(2*Δf)*EL/
SN R Rx_in = P s THERMAL P l + P l *LOIN*CMRR+SHOT
THERMAL=8* ( i TIA ) 2 *Δf*E L 2 / 2
LOIN=2*(RIN*2*Δf)
SHOT=2*q*(2*Δf)*EL/
P l_optimum = 1 2 *(THERMALLOINCMRR)

Metrics