Abstract

Line-by-line pulse shaping is demonstrated on a 890 MHz repetition rate mode-locked titanium sapphire laser. The high resolution pulse shaper is based on a virtual imaged phased array (VIPA) with a free spectral range of 25 GHz. For our implementation, the mask repeats every VIPA free spectral range, which corresponds to every 28 comb lines. Individual frequency modes from the laser are also resolved using the same VIPA paired with a diffraction grating to achieve a resolution of 357 MHz. Several output waveforms are compared with simulation to understand differences with the ideal case.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [CrossRef]
  2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [CrossRef] [PubMed]
  3. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb Technology (Springer, 2005).
  4. Z. Jiang, D.-S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005).
    [CrossRef] [PubMed]
  5. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
    [CrossRef]
  6. J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Theory of rapid-update line-by-line pulse shaping,” Opt. Express 16(1), 315–327 (2008).
    [CrossRef] [PubMed]
  7. R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18(18), 18655–18670 (2010).
    [CrossRef] [PubMed]
  8. R.P. Scott, N. K Fontaine, D.J. Geisler, T. He, J.P. Heritage, and S.J.B. Yoo, “Demonstration of dynamic optical arbitrary waveform generation with 5-ns record lengths and 33-ps features,” CLEO 2011, paper CWH5 (2011).
  9. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [CrossRef] [PubMed]
  10. A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24(14), 996–998 (1999).
    [CrossRef] [PubMed]
  11. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [CrossRef]
  12. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996).
    [CrossRef] [PubMed]
  13. S. Xiao, A. M. Weiner, and C. Lin, “Experimental and theoretical study of hyperfine WDM demulitplexer performance ssing the virtually imaged phased-array (VIPA),” J. Lightwave Technol. 23(3), 1456–1467 (2005).
    [CrossRef]
  14. T. K. Chan, J. Karp, R. Jiang, N. Alic, S. Radic, C. F. Marki, and J. E. Ford, “1092 channel 2-D array demultiplexer for ultralarge data bandwidth,” J. Lightwave Technol. 25(3), 719–725 (2007).
    [CrossRef]
  15. S. Xiao and A. Weiner, “2-D wavelength demultiplexer with potential for >/= 1000 channels in the C-band,” Opt. Express 12(13), 2895–2902 (2004).
    [CrossRef] [PubMed]
  16. S. Xiao and A. M. Weiner, “An eight-channel hyperfine wavelength demultiplexer using a virtually imaged phased-array (VIPA),” IEEE Photon. Technol. Lett. 17(2), 372–374 (2005).
    [CrossRef]
  17. G. H. Lee and A. M. Weiner, “Programmable optical pulse burst manipulation using a virtually imaged phased array (VIPA) based Fourier transform pulse shaper,” J. Lightwave Technol. 23(11), 3916–3923 (2005).
    [CrossRef]
  18. V. R. Supradeepa, E. Hamidi, D. E. Leaird, and A. M. Weiner, “New aspects of temporal dispersion in high resolution Fourier pulse shaping: A quantitative description with virtually imaged phased array pulse shapers,” J. Opt. Soc. Am. B 27(9), 1833–1844 (2010).
    [CrossRef]
  19. S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
    [CrossRef]

2010 (3)

2008 (1)

2007 (3)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

T. K. Chan, J. Karp, R. Jiang, N. Alic, S. Radic, C. F. Marki, and J. E. Ford, “1092 channel 2-D array demultiplexer for ultralarge data bandwidth,” J. Lightwave Technol. 25(3), 719–725 (2007).
[CrossRef]

2005 (4)

2004 (2)

S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

S. Xiao and A. Weiner, “2-D wavelength demultiplexer with potential for >/= 1000 channels in the C-band,” Opt. Express 12(13), 2895–2902 (2004).
[CrossRef] [PubMed]

2000 (2)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

1999 (1)

1996 (1)

Alic, N.

Bartels, A.

Chan, T. K.

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[CrossRef]

J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Theory of rapid-update line-by-line pulse shaping,” Opt. Express 16(1), 315–327 (2008).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Dekorsy, T.

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Fontaine, N. K.

Ford, J. E.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Hamidi, E.

Heritage, J. P.

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Huang, C. B.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Jiang, R.

Jiang, Z.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Z. Jiang, D.-S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005).
[CrossRef] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Karp, J.

Kurz, H.

Leaird, D. E.

Lee, G. H.

Lin, C.

S. Xiao, A. M. Weiner, and C. Lin, “Experimental and theoretical study of hyperfine WDM demulitplexer performance ssing the virtually imaged phased-array (VIPA),” J. Lightwave Technol. 23(3), 1456–1467 (2005).
[CrossRef]

S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

Marki, C. F.

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Radic, S.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Scott, R. P.

Seo, D.-S.

Shirasaki, M.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Supradeepa, V. R.

Weiner, A.

Weiner, A. M.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[CrossRef]

V. R. Supradeepa, E. Hamidi, D. E. Leaird, and A. M. Weiner, “New aspects of temporal dispersion in high resolution Fourier pulse shaping: A quantitative description with virtually imaged phased array pulse shapers,” J. Opt. Soc. Am. B 27(9), 1833–1844 (2010).
[CrossRef]

J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Theory of rapid-update line-by-line pulse shaping,” Opt. Express 16(1), 315–327 (2008).
[CrossRef] [PubMed]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

S. Xiao and A. M. Weiner, “An eight-channel hyperfine wavelength demultiplexer using a virtually imaged phased-array (VIPA),” IEEE Photon. Technol. Lett. 17(2), 372–374 (2005).
[CrossRef]

S. Xiao, A. M. Weiner, and C. Lin, “Experimental and theoretical study of hyperfine WDM demulitplexer performance ssing the virtually imaged phased-array (VIPA),” J. Lightwave Technol. 23(3), 1456–1467 (2005).
[CrossRef]

G. H. Lee and A. M. Weiner, “Programmable optical pulse burst manipulation using a virtually imaged phased array (VIPA) based Fourier transform pulse shaper,” J. Lightwave Technol. 23(11), 3916–3923 (2005).
[CrossRef]

Z. Jiang, D.-S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005).
[CrossRef] [PubMed]

S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Willits, J. T.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Xiao, S.

Xiao, S. J.

S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

Yoo, S. J. B.

IEEE J. Quantum Electron. (1)

S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Xiao and A. M. Weiner, “An eight-channel hyperfine wavelength demultiplexer using a virtually imaged phased-array (VIPA),” IEEE Photon. Technol. Lett. 17(2), 372–374 (2005).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[CrossRef]

Nature (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Other (2)

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb Technology (Springer, 2005).

R.P. Scott, N. K Fontaine, D.J. Geisler, T. He, J.P. Heritage, and S.J.B. Yoo, “Demonstration of dynamic optical arbitrary waveform generation with 5-ns record lengths and 33-ps features,” CLEO 2011, paper CWH5 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The high resolution setup (a) resolves individual comb lines spaced by 890 MHz. The VIPA with a FSR of 25 GHz separates adjacent comb lines in the y direction and the grating separates repeated orders of the VIPA along the x direction. The white arrows show adjacent comb lines with increasing frequency. The 1-D VIPA only based pulse shaper (b) shows how by removing the grating and horizontal beam expander adjacent frequency modes are resolved into separate groups. These groups of comb lines can then be modified to perform line-by-line pulse shaping with spectral masks that repeat every VIPA FSR.

Fig. 2
Fig. 2

Images showing a frequency brush of the resolved discrete frequencies of an 890 MHz pulse train. The image on the left shows the entire VIPA FSR and the image on the right shows a zoomed-in section of the spectrum. For the image on the left, the left vertical axis is labeled in pixels, whereas the right axis is labeled in frequency. For the image on the right, the difference between pixels and frequency is imperceptible.

Fig. 3
Fig. 3

(a) Two frequencies from the continuous wave laser separated by 890 MHz are used to calibrate the wavelength sensitivity and determine the resolution. They also show crosstalk between adjacent frequencies of the 890 MHz brush. (b) Measured wavelength vs. VIPA output angle (red circles) fit to paraxial VIPA dispersion law (black line).

Fig. 4
Fig. 4

Simulation of the temporal (first two columns) and spectral (last column) output of the 1-D VIPA based pulse shaper under ideal and non-ideal conditions for several masks. No mask (a-c), alternating comb mask (d-f), and a mask that blocks 3 out of every 4 comb lines (g-i) are shown. Time zero is chosen to be the time half-way between two pulses of the original pulse train. Under ideal conditions there is no phase modulation of the spectrum (flat phase illustrated in green) and when dispersion is present inside the pulse shaper there is periodic phase in the spectrum (illustrated in black).

Fig. 5
Fig. 5

Cross-correlation scans of pulse trains shaped by different line-by-line masks. Time zero is chosen to be the time half-way between two pulses of the unmasked pulse train. The first row (a) shows the output of the pulse shaper with no mask in place. An alternating comb line mask is used for the second row trace (b). The last row shows the output of the pulse shaper where 3 out of every 4 comb lines are blocked (c).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ=λ[ tan( θ in )cos( θ i ) ncos( θ in ) + θ λ 2 n 2 ]

Metrics