Abstract

Silica microspheres are probed with a dual comb interferometry setup. The impulse responses of these microresonators are measured with a temporal resolution smaller than 400 fs over more than 200 ps. The amplitudes and phases of the impulse responses are interpreted as providing sensing information. The more familiar transmission spectra corresponding to the measured impulse responses are also calculated and shown. Sensing is demonstrated by varying the concentration of isopropanol in de-ionized water surrounding the microsphere and by binding bovine serum albumin on the silanized microsphere surface.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
    [CrossRef] [PubMed]
  2. S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. N. Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors (Basel Switzerland) 11(1), 785–805 (2011).
    [CrossRef]
  3. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
    [CrossRef]
  4. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
    [CrossRef] [PubMed]
  5. Z. Yu and S. Fan, “Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes,” Opt. Express 19(11), 10029–10040 (2011).
    [CrossRef] [PubMed]
  6. T. J. Kippenberg, “Microresonators: Particle sizing by mode splitting,” Nat. Photonics 4(1), 9–10 (2010).
    [CrossRef]
  7. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [CrossRef]
  8. M. Charlebois, A. Paquet, L. S. Verret, K. Boissinot, M. Boissinot, M. G. Bergeron, and C. Nì. Allen, “Toward automatic label-free whispering gallery modes biodetection with a quantum dot-coated microsphere population,” Nanoscale Res. Lett. 5(3), 524–532 (2010).
    [CrossRef] [PubMed]
  9. I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265(1), 33–38 (2006).
    [CrossRef]
  10. A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90(3-4), 561–567 (2008).
    [CrossRef]
  11. H. T. Beier, G. L. Coté, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37(10), 1974–1983 (2009).
    [CrossRef] [PubMed]
  12. H. T. Beier, G. L. Coté, and K. E. Meissner, “Modeling whispering gallery modes in quantum dot embedded polystyrene microspheres,” J. Opt. Soc. Am. B 27(3), 536–543 (2010).
    [CrossRef]
  13. A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
    [CrossRef]
  14. J. Barnes, B. Carver, J. M. Fraser, G. Gagliardi, H.-P. Loock, Z. Tian, M. W. B. Wilson, S. Yam, and O. Yastrubshak, “Loss determination in microsphere resonators by phase-shift cavity ring-down measurements,” Opt. Express 16(17), 13158–13167 (2008).
    [CrossRef] [PubMed]
  15. R. W. Shaw, W. B. Whitten, M. D. Barnes, and J. M. Ramsey, “Time-domain observation of optical pulse propagation in whispering-gallery modes of glass spheres,” Opt. Lett. 23(16), 1301–1303 (1998).
    [CrossRef] [PubMed]
  16. T. Siebert, O. Sbanski, M. Schmitt, V. Engel, W. Kiefer, and J. Popp, “The mechanism of light storage in spherical microcavities explored on a femtosecond time scale,” Opt. Commun. 216(4-6), 321–327 (2003).
    [CrossRef]
  17. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
    [CrossRef] [PubMed]
  18. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
    [CrossRef] [PubMed]
  19. H. Gersen, D. J. W. Klunder, J. P. Korterik, A. Driessen, N. F. van Hulst, and L. Kuipers, “Propagation of a femtosecond pulse in a microresonator visualized in time,” Opt. Lett. 29(11), 1291–1293 (2004).
    [CrossRef] [PubMed]
  20. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [CrossRef] [PubMed]
  21. J.-D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18(22), 23358–23370 (2010).
    [CrossRef] [PubMed]
  22. P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16(6), 4347–4365 (2008).
    [CrossRef] [PubMed]
  23. J. W. Brault, “Transform Spectroscopy,” Proc. of the 15th Advanced Course of the SSAA, 1–61 (1985).
  24. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [CrossRef]
  25. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010).
    [CrossRef]
  26. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [CrossRef] [PubMed]
  27. C. Y. Wang, T. Herr, P. del'Haye, A. Schliesser, R. Holzwarth, T. W. Hänsch, N. Picqué, and J. Kippenberg, “Mid-infrared frequency combs based on microresonators”, in CLEO: 2011 OSA Technical Digest (CD), paper PDPA4 (2011).
  28. K.-C. Fan, H.-Y. Hsu, P.-Y. Hung, and W. Wang, “Experimental study of fabricating a microball tip on an optical fiber,” J. Opt. A, Pure Appl. Opt. 8(9), 782–787 (2006).
    [CrossRef]
  29. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
    [CrossRef] [PubMed]
  30. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
    [CrossRef] [PubMed]
  31. J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64(2), 023808 (2001).
    [CrossRef]
  32. A. Kastler, “Transmission d’une impulsion lumineuse par un interféromètre Fabry-Pérot,” Nouvelle Revue d’Optique 5, 133–139 (1974).
    [CrossRef]
  33. F. Vollmer, “Resonant detection of nano to microscopic objects using whispering gallery modes,” Thesis, (2004).
  34. M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, “Molecular weight dependence of a whispering gallery mode biosensor,” Appl. Phys. Lett. 87(22), 223901 (2005).
    [CrossRef]
  35. S. Arnold, S. I. Shopova, and S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express 18(1), 281–287 (2010).
    [CrossRef] [PubMed]

2011

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[CrossRef] [PubMed]

Z. Yu and S. Fan, “Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes,” Opt. Express 19(11), 10029–10040 (2011).
[CrossRef] [PubMed]

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. N. Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors (Basel Switzerland) 11(1), 785–805 (2011).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

2010

J.-D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18(22), 23358–23370 (2010).
[CrossRef] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010).
[CrossRef]

S. Arnold, S. I. Shopova, and S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express 18(1), 281–287 (2010).
[CrossRef] [PubMed]

T. J. Kippenberg, “Microresonators: Particle sizing by mode splitting,” Nat. Photonics 4(1), 9–10 (2010).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

M. Charlebois, A. Paquet, L. S. Verret, K. Boissinot, M. Boissinot, M. G. Bergeron, and C. Nì. Allen, “Toward automatic label-free whispering gallery modes biodetection with a quantum dot-coated microsphere population,” Nanoscale Res. Lett. 5(3), 524–532 (2010).
[CrossRef] [PubMed]

H. T. Beier, G. L. Coté, and K. E. Meissner, “Modeling whispering gallery modes in quantum dot embedded polystyrene microspheres,” J. Opt. Soc. Am. B 27(3), 536–543 (2010).
[CrossRef]

2009

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
[CrossRef]

H. T. Beier, G. L. Coté, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37(10), 1974–1983 (2009).
[CrossRef] [PubMed]

2008

2006

K.-C. Fan, H.-Y. Hsu, P.-Y. Hung, and W. Wang, “Experimental study of fabricating a microball tip on an optical fiber,” J. Opt. A, Pure Appl. Opt. 8(9), 782–787 (2006).
[CrossRef]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265(1), 33–38 (2006).
[CrossRef]

2005

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[CrossRef]

A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
[CrossRef] [PubMed]

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, “Molecular weight dependence of a whispering gallery mode biosensor,” Appl. Phys. Lett. 87(22), 223901 (2005).
[CrossRef]

2004

2003

T. Siebert, O. Sbanski, M. Schmitt, V. Engel, W. Kiefer, and J. Popp, “The mechanism of light storage in spherical microcavities explored on a femtosecond time scale,” Opt. Commun. 216(4-6), 321–327 (2003).
[CrossRef]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[CrossRef] [PubMed]

2002

2001

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64(2), 023808 (2001).
[CrossRef]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
[CrossRef] [PubMed]

1998

1990

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
[CrossRef] [PubMed]

1974

A. Kastler, “Transmission d’une impulsion lumineuse par un interféromètre Fabry-Pérot,” Nouvelle Revue d’Optique 5, 133–139 (1974).
[CrossRef]

Allen, C. Nì.

M. Charlebois, A. Paquet, L. S. Verret, K. Boissinot, M. Boissinot, M. G. Bergeron, and C. Nì. Allen, “Toward automatic label-free whispering gallery modes biodetection with a quantum dot-coated microsphere population,” Nanoscale Res. Lett. 5(3), 524–532 (2010).
[CrossRef] [PubMed]

Arnold, S.

S. Arnold, S. I. Shopova, and S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express 18(1), 281–287 (2010).
[CrossRef] [PubMed]

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, “Molecular weight dependence of a whispering gallery mode biosensor,” Appl. Phys. Lett. 87(22), 223901 (2005).
[CrossRef]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[CrossRef] [PubMed]

Balistreri, M. L. M.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
[CrossRef] [PubMed]

Barber, P. W.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
[CrossRef] [PubMed]

Barnes, J.

Barnes, M. D.

Beard, M. C.

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64(2), 023808 (2001).
[CrossRef]

Beier, H. T.

H. T. Beier, G. L. Coté, and K. E. Meissner, “Modeling whispering gallery modes in quantum dot embedded polystyrene microspheres,” J. Opt. Soc. Am. B 27(3), 536–543 (2010).
[CrossRef]

H. T. Beier, G. L. Coté, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37(10), 1974–1983 (2009).
[CrossRef] [PubMed]

Bergeron, M. G.

M. Charlebois, A. Paquet, L. S. Verret, K. Boissinot, M. Boissinot, M. G. Bergeron, and C. Nì. Allen, “Toward automatic label-free whispering gallery modes biodetection with a quantum dot-coated microsphere population,” Nanoscale Res. Lett. 5(3), 524–532 (2010).
[CrossRef] [PubMed]

Berneschi, S.

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. N. Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors (Basel Switzerland) 11(1), 785–805 (2011).
[CrossRef]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Boissinot, K.

M. Charlebois, A. Paquet, L. S. Verret, K. Boissinot, M. Boissinot, M. G. Bergeron, and C. Nì. Allen, “Toward automatic label-free whispering gallery modes biodetection with a quantum dot-coated microsphere population,” Nanoscale Res. Lett. 5(3), 524–532 (2010).
[CrossRef] [PubMed]

Boissinot, M.

M. Charlebois, A. Paquet, L. S. Verret, K. Boissinot, M. Boissinot, M. G. Bergeron, and C. Nì. Allen, “Toward automatic label-free whispering gallery modes biodetection with a quantum dot-coated microsphere population,” Nanoscale Res. Lett. 5(3), 524–532 (2010).
[CrossRef] [PubMed]

Braun, D.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[CrossRef] [PubMed]

Brehm, M.

Brenci, M.

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. N. Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors (Basel Switzerland) 11(1), 785–805 (2011).
[CrossRef]

Carver, B.

Chang, R. K.

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64(2), 023808 (2001).
[CrossRef]

Charlebois, M.

M. Charlebois, A. Paquet, L. S. Verret, K. Boissinot, M. Boissinot, M. G. Bergeron, and C. Nì. Allen, “Toward automatic label-free whispering gallery modes biodetection with a quantum dot-coated microsphere population,” Nanoscale Res. Lett. 5(3), 524–532 (2010).
[CrossRef] [PubMed]

Chembo, Y. K.

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010).
[CrossRef]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[CrossRef] [PubMed]

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

Conti, G. N.

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. N. Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors (Basel Switzerland) 11(1), 785–805 (2011).
[CrossRef]

Cosi, F.

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. N. Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors (Basel Switzerland) 11(1), 785–805 (2011).
[CrossRef]

Coté, G. L.

H. T. Beier, G. L. Coté, and K. E. Meissner, “Modeling whispering gallery modes in quantum dot embedded polystyrene microspheres,” J. Opt. Soc. Am. B 27(3), 536–543 (2010).
[CrossRef]

H. T. Beier, G. L. Coté, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37(10), 1974–1983 (2009).
[CrossRef] [PubMed]

Dahint, R.

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90(3-4), 561–567 (2008).
[CrossRef]

Deschênes, J.-D.

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Driessen, A.

Engel, V.

T. Siebert, O. Sbanski, M. Schmitt, V. Engel, W. Kiefer, and J. Popp, “The mechanism of light storage in spherical microcavities explored on a femtosecond time scale,” Opt. Commun. 216(4-6), 321–327 (2003).
[CrossRef]

Fan, K.-C.

K.-C. Fan, H.-Y. Hsu, P.-Y. Hung, and W. Wang, “Experimental study of fabricating a microball tip on an optical fiber,” J. Opt. A, Pure Appl. Opt. 8(9), 782–787 (2006).
[CrossRef]

Fan, S.

Fan, X.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[CrossRef]

Flagan, R. C.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[CrossRef] [PubMed]

Francois, A.

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
[CrossRef]

Fraser, J. M.

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[CrossRef] [PubMed]

Gagliardi, G.

Genest, J.

Gersen, H.

H. Gersen, D. J. W. Klunder, J. P. Korterik, A. Driessen, N. F. van Hulst, and L. Kuipers, “Propagation of a femtosecond pulse in a microresonator visualized in time,” Opt. Lett. 29(11), 1291–1293 (2004).
[CrossRef] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
[CrossRef] [PubMed]

Giaccari, P.

Giaccarri, P.

Grudinin, I. S.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265(1), 33–38 (2006).
[CrossRef]

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Hänsch, T. W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[CrossRef]

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[CrossRef] [PubMed]

Hill, S. C.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
[CrossRef] [PubMed]

Himmelhaus, M.

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
[CrossRef]

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90(3-4), 561–567 (2008).
[CrossRef]

Holler, S.

S. Arnold, S. I. Shopova, and S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express 18(1), 281–287 (2010).
[CrossRef] [PubMed]

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64(2), 023808 (2001).
[CrossRef]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Hsu, H.-Y.

K.-C. Fan, H.-Y. Hsu, P.-Y. Hung, and W. Wang, “Experimental study of fabricating a microball tip on an optical fiber,” J. Opt. A, Pure Appl. Opt. 8(9), 782–787 (2006).
[CrossRef]

Hung, P.-Y.

K.-C. Fan, H.-Y. Hsu, P.-Y. Hung, and W. Wang, “Experimental study of fabricating a microball tip on an optical fiber,” J. Opt. A, Pure Appl. Opt. 8(9), 782–787 (2006).
[CrossRef]

Ilchenko, V. S.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265(1), 33–38 (2006).
[CrossRef]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Kastler, A.

A. Kastler, “Transmission d’une impulsion lumineuse par un interféromètre Fabry-Pérot,” Nouvelle Revue d’Optique 5, 133–139 (1974).
[CrossRef]

Keilmann, F.

Keng, D.

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, “Molecular weight dependence of a whispering gallery mode biosensor,” Appl. Phys. Lett. 87(22), 223901 (2005).
[CrossRef]

Khoshsima, M.

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, “Molecular weight dependence of a whispering gallery mode biosensor,” Appl. Phys. Lett. 87(22), 223901 (2005).
[CrossRef]

Kiefer, W.

T. Siebert, O. Sbanski, M. Schmitt, V. Engel, W. Kiefer, and J. Popp, “The mechanism of light storage in spherical microcavities explored on a femtosecond time scale,” Opt. Commun. 216(4-6), 321–327 (2003).
[CrossRef]

Kim, J.-H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[CrossRef] [PubMed]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

T. J. Kippenberg, “Microresonators: Particle sizing by mode splitting,” Nat. Photonics 4(1), 9–10 (2010).
[CrossRef]

Klunder, D. J. W.

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Kolchenko, V.

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, “Molecular weight dependence of a whispering gallery mode biosensor,” Appl. Phys. Lett. 87(22), 223901 (2005).
[CrossRef]

Korterik, J. P.

H. Gersen, D. J. W. Klunder, J. P. Korterik, A. Driessen, N. F. van Hulst, and L. Kuipers, “Propagation of a femtosecond pulse in a microresonator visualized in time,” Opt. Lett. 29(11), 1291–1293 (2004).
[CrossRef] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
[CrossRef] [PubMed]

Kuipers, L.

H. Gersen, D. J. W. Klunder, J. P. Korterik, A. Driessen, N. F. van Hulst, and L. Kuipers, “Propagation of a femtosecond pulse in a microresonator visualized in time,” Opt. Lett. 29(11), 1291–1293 (2004).
[CrossRef] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
[CrossRef] [PubMed]

Lai, H. M.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
[CrossRef] [PubMed]

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[CrossRef] [PubMed]

Leung, P. T.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
[CrossRef] [PubMed]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Libchaber, A.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[CrossRef] [PubMed]

Liu, F. C.

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90(3-4), 561–567 (2008).
[CrossRef]

Loock, H.-P.

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[CrossRef] [PubMed]

Maleki, L.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265(1), 33–38 (2006).
[CrossRef]

Matsko, A. B.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265(1), 33–38 (2006).
[CrossRef]

Meissner, K. E.

H. T. Beier, G. L. Coté, and K. E. Meissner, “Modeling whispering gallery modes in quantum dot embedded polystyrene microspheres,” J. Opt. Soc. Am. B 27(3), 536–543 (2010).
[CrossRef]

H. T. Beier, G. L. Coté, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37(10), 1974–1983 (2009).
[CrossRef] [PubMed]

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

Noto, M.

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, “Molecular weight dependence of a whispering gallery mode biosensor,” Appl. Phys. Lett. 87(22), 223901 (2005).
[CrossRef]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Pan, Y.-L.

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64(2), 023808 (2001).
[CrossRef]

Paquet, A.

M. Charlebois, A. Paquet, L. S. Verret, K. Boissinot, M. Boissinot, M. G. Bergeron, and C. Nì. Allen, “Toward automatic label-free whispering gallery modes biodetection with a quantum dot-coated microsphere population,” Nanoscale Res. Lett. 5(3), 524–532 (2010).
[CrossRef] [PubMed]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[CrossRef]

Pelli, S.

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. N. Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors (Basel Switzerland) 11(1), 785–805 (2011).
[CrossRef]

Picqué, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Popp, J.

T. Siebert, O. Sbanski, M. Schmitt, V. Engel, W. Kiefer, and J. Popp, “The mechanism of light storage in spherical microcavities explored on a femtosecond time scale,” Opt. Commun. 216(4-6), 321–327 (2003).
[CrossRef]

Ramsey, J. M.

Righini, G. C.

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. N. Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors (Basel Switzerland) 11(1), 785–805 (2011).
[CrossRef]

Saucier, P.

Savchenkov, A. A.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265(1), 33–38 (2006).
[CrossRef]

Sbanski, O.

T. Siebert, O. Sbanski, M. Schmitt, V. Engel, W. Kiefer, and J. Popp, “The mechanism of light storage in spherical microcavities explored on a femtosecond time scale,” Opt. Commun. 216(4-6), 321–327 (2003).
[CrossRef]

Schiller, S.

Schliesser, A.

Schmitt, M.

T. Siebert, O. Sbanski, M. Schmitt, V. Engel, W. Kiefer, and J. Popp, “The mechanism of light storage in spherical microcavities explored on a femtosecond time scale,” Opt. Commun. 216(4-6), 321–327 (2003).
[CrossRef]

Schmuttenmaer, C. A.

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64(2), 023808 (2001).
[CrossRef]

Shaw, R. W.

Shopova, S. I.

Siebert, T.

T. Siebert, O. Sbanski, M. Schmitt, V. Engel, W. Kiefer, and J. Popp, “The mechanism of light storage in spherical microcavities explored on a femtosecond time scale,” Opt. Commun. 216(4-6), 321–327 (2003).
[CrossRef]

Soria, S.

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. N. Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors (Basel Switzerland) 11(1), 785–805 (2011).
[CrossRef]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[CrossRef]

Strekalov, D.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265(1), 33–38 (2006).
[CrossRef]

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

Teraoka, I.

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, “Molecular weight dependence of a whispering gallery mode biosensor,” Appl. Phys. Lett. 87(22), 223901 (2005).
[CrossRef]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[CrossRef] [PubMed]

Tian, Z.

Tremblay, P.

Turner, G. M.

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64(2), 023808 (2001).
[CrossRef]

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[CrossRef] [PubMed]

van der Weide, D.

van Hulst, N. F.

H. Gersen, D. J. W. Klunder, J. P. Korterik, A. Driessen, N. F. van Hulst, and L. Kuipers, “Propagation of a femtosecond pulse in a microresonator visualized in time,” Opt. Lett. 29(11), 1291–1293 (2004).
[CrossRef] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
[CrossRef] [PubMed]

Verret, L. S.

M. Charlebois, A. Paquet, L. S. Verret, K. Boissinot, M. Boissinot, M. G. Bergeron, and C. Nì. Allen, “Toward automatic label-free whispering gallery modes biodetection with a quantum dot-coated microsphere population,” Nanoscale Res. Lett. 5(3), 524–532 (2010).
[CrossRef] [PubMed]

Vollmer, F.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[CrossRef] [PubMed]

Wang, W.

K.-C. Fan, H.-Y. Hsu, P.-Y. Hung, and W. Wang, “Experimental study of fabricating a microball tip on an optical fiber,” J. Opt. A, Pure Appl. Opt. 8(9), 782–787 (2006).
[CrossRef]

Weller, A.

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90(3-4), 561–567 (2008).
[CrossRef]

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[CrossRef]

Whitten, W. B.

Wilson, M. W. B.

Wolf, J.-P.

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64(2), 023808 (2001).
[CrossRef]

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Yam, S.

Yang, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Yastrubshak, O.

Young, K.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
[CrossRef] [PubMed]

Yu, N.

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010).
[CrossRef]

Yu, Z.

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Ann. Biomed. Eng.

H. T. Beier, G. L. Coté, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37(10), 1974–1983 (2009).
[CrossRef] [PubMed]

Appl. Phys. B

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90(3-4), 561–567 (2008).
[CrossRef]

Appl. Phys. Lett.

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[CrossRef]

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, “Molecular weight dependence of a whispering gallery mode biosensor,” Appl. Phys. Lett. 87(22), 223901 (2005).
[CrossRef]

Biophys. J.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt.

K.-C. Fan, H.-Y. Hsu, P.-Y. Hung, and W. Wang, “Experimental study of fabricating a microball tip on an optical fiber,” J. Opt. A, Pure Appl. Opt. 8(9), 782–787 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Nanoscale Res. Lett.

M. Charlebois, A. Paquet, L. S. Verret, K. Boissinot, M. Boissinot, M. G. Bergeron, and C. Nì. Allen, “Toward automatic label-free whispering gallery modes biodetection with a quantum dot-coated microsphere population,” Nanoscale Res. Lett. 5(3), 524–532 (2010).
[CrossRef] [PubMed]

Nat. Photonics

T. J. Kippenberg, “Microresonators: Particle sizing by mode splitting,” Nat. Photonics 4(1), 9–10 (2010).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Nouvelle Revue d’Optique

A. Kastler, “Transmission d’une impulsion lumineuse par un interféromètre Fabry-Pérot,” Nouvelle Revue d’Optique 5, 133–139 (1974).
[CrossRef]

Opt. Commun.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265(1), 33–38 (2006).
[CrossRef]

T. Siebert, O. Sbanski, M. Schmitt, V. Engel, W. Kiefer, and J. Popp, “The mechanism of light storage in spherical microcavities explored on a femtosecond time scale,” Opt. Commun. 216(4-6), 321–327 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41(9), 5187–5198 (1990).
[CrossRef] [PubMed]

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64(2), 023808 (2001).
[CrossRef]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010).
[CrossRef]

Phys. Rev. Lett.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[CrossRef] [PubMed]

Science

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
[CrossRef] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Sensors (Basel Switzerland)

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. N. Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors (Basel Switzerland) 11(1), 785–805 (2011).
[CrossRef]

Other

C. Y. Wang, T. Herr, P. del'Haye, A. Schliesser, R. Holzwarth, T. W. Hänsch, N. Picqué, and J. Kippenberg, “Mid-infrared frequency combs based on microresonators”, in CLEO: 2011 OSA Technical Digest (CD), paper PDPA4 (2011).

J. W. Brault, “Transform Spectroscopy,” Proc. of the 15th Advanced Course of the SSAA, 1–61 (1985).

F. Vollmer, “Resonant detection of nano to microscopic objects using whispering gallery modes,” Thesis, (2004).

Supplementary Material (3)

» Media 1: MPG (1541 KB)     
» Media 2: MPG (1738 KB)     
» Media 3: MPG (1240 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup used to probe microspheres. Two polarization controllers (PC) are used to choose the polarization before and after the microsphere. The acquisition chain includes a balanced detector (D), an electrical amplifier (RF Amp.), a low-pass filter (LPF) and an analog-to-digital converter (ADC).

Fig. 2
Fig. 2

Mode spectra of a ~88 µm SiO2 microsphere. (a) Degenerate l-modes wavelengths as calculated from [8]. (b) Full spectrum of non-degenerate m-modes measured using a tuneable laser. (c) Same, measured with the dual frequency comb.

Fig. 3
Fig. 3

Sensitivity to excitation polarization: the same modes are present in both curves corresponding to distinct polarizations, but their relative intensities vary (Media 1).

Fig. 4
Fig. 4

(a) Impulse response of a ~73 µm microsphere in solutions of isopropanol in water at different concentrations. (b) Zoom on the initial pulse going through the fibre taper only. (c) Zoom on the pulse having entered the microresonator and leaving after a single revolution. The bright traces are the real part of the IGMs, while the faint ones are the magnitude.

Fig. 5
Fig. 5

Transmission spectra obtained from the Fourier transform of the impulse response of a ~73 μm microsphere immersed in (a) 0%, (b) 10%, and (c) 19% v/v isopropanol in water solution.

Fig. 6
Fig. 6

(a) Impulse response of a silanized microsphere with increasing BSA surface coverage at different times after the injection. (b) Zoom on the pulse after a single round-trip showing a progressive phase-shift from red to blue while keeping the same envelope in magnitude. (c) Zoom on the pulses after 16 and 17 round-trips. The bright traces are the real part of the IGMs, while the faint ones are the magnitude.

Fig. 7
Fig. 7

Microsphere (a) spectrum (Media 2) and (b) IGM after protein injection (Media 3).

Metrics