Abstract

We experimentally investigate the fluorescence photon emission characteristics for single q-dots by using optical nanofibers. We demonstrate that single q-dots can be deposited along an optical nanofiber systematically and reproducibly with a precision of 5 μm. For single q-dots on an optical nanofiber, we measure the fluorescence photon numbers coupled into the nanofiber and the normalized photon correlations, by varying the excitation laser intensity. We estimate the fluorescence photon coupling efficiency into the nanofiber guided modes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef] [PubMed]
  2. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
    [CrossRef] [PubMed]
  3. K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofibre,” N. J. Phys. 10, 053003 (2008).
    [CrossRef]
  4. V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004).
    [CrossRef]
  5. F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
    [CrossRef]
  6. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
    [CrossRef] [PubMed]
  7. K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79, 021801 (2009).
    [CrossRef]
  8. M. Das, A. Shirasaki, K. P. Nayak, M. Morinaga, F. L. Kien, and K. Hakuta, “Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber,” Opt. Express 18, 17154–17164 (2010).
    [CrossRef] [PubMed]
  9. F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
    [CrossRef]
  10. E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
    [CrossRef] [PubMed]
  11. F. L. Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
    [CrossRef]
  12. K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
    [CrossRef] [PubMed]
  13. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36, 3115–3117 (2011).
    [CrossRef] [PubMed]
  14. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
    [CrossRef]
  15. Al. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78, 1110–1113 (1997).
    [CrossRef]
  16. M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots:A universal power law behavior,” J. Chem. Phys. 112, 3117–3120 (2000).
    [CrossRef]
  17. M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, ““On”/“off” fluorescence intermittency of single semiconductor quantum dots,” J. Chem. Phys. 115, 1028–1040 (2001).
    [CrossRef]
  18. R. Loudon, Quantum Theory of Light (Oxford University Press, 2000).
  19. Invitrogen, Certificate of analysis Q21371MP 834674.
  20. S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, “Photoluminescence from single semiconductor nanostructures,” Adv. Mater. 11, 1243–1256 (1999).
    [CrossRef]
  21. R. Arians, T. Kummell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
    [CrossRef]
  22. B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
    [CrossRef]
  23. In the company quotation, the quantum efficiency was measured relatively to rhodamine 101. We assume the quantum efficiency of rhodamine 101 to be 100%.
  24. T. Karstens and K. Kobs, “Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements,” J. Phys. Chem. 84, 1871–1872 (1980).
    [CrossRef]

2011 (2)

2010 (2)

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

M. Das, A. Shirasaki, K. P. Nayak, M. Morinaga, F. L. Kien, and K. Hakuta, “Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber,” Opt. Express 18, 17154–17164 (2010).
[CrossRef] [PubMed]

2009 (2)

F. L. Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
[CrossRef]

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79, 021801 (2009).
[CrossRef]

2008 (1)

K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofibre,” N. J. Phys. 10, 053003 (2008).
[CrossRef]

2007 (3)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

R. Arians, T. Kummell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

2005 (1)

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

2004 (2)

F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[CrossRef]

V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004).
[CrossRef]

2003 (1)

K. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

2001 (1)

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, ““On”/“off” fluorescence intermittency of single semiconductor quantum dots,” J. Chem. Phys. 115, 1028–1040 (2001).
[CrossRef]

2000 (2)

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots:A universal power law behavior,” J. Chem. Phys. 112, 3117–3120 (2000).
[CrossRef]

1999 (1)

S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, “Photoluminescence from single semiconductor nanostructures,” Adv. Mater. 11, 1243–1256 (1999).
[CrossRef]

1997 (1)

Al. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78, 1110–1113 (1997).
[CrossRef]

1996 (1)

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

1980 (1)

T. Karstens and K. Kobs, “Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements,” J. Phys. Chem. 84, 1871–1872 (1980).
[CrossRef]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Alivisatos, P.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

Arians, R.

R. Arians, T. Kummell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

Bacher, G.

R. Arians, T. Kummell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

Balykin, V. I.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[CrossRef]

Bawendi, M. G.

S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, “Photoluminescence from single semiconductor nanostructures,” Adv. Mater. 11, 1243–1256 (1999).
[CrossRef]

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

Bechtel, H. A.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

Brus, L. E.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Dabbousi, B. O.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

Das, M.

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

Ducloy, M.

V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004).
[CrossRef]

Dutta Gupta, S.

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

Efros, Al. L.

Al. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78, 1110–1113 (1997).
[CrossRef]

Empedocles, S. A.

S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, “Photoluminescence from single semiconductor nanostructures,” Adv. Mater. 11, 1243–1256 (1999).
[CrossRef]

Fromm, D. P.

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, ““On”/“off” fluorescence intermittency of single semiconductor quantum dots,” J. Chem. Phys. 115, 1028–1040 (2001).
[CrossRef]

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots:A universal power law behavior,” J. Chem. Phys. 112, 3117–3120 (2000).
[CrossRef]

Gallagher, A.

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, ““On”/“off” fluorescence intermittency of single semiconductor quantum dots,” J. Chem. Phys. 115, 1028–1040 (2001).
[CrossRef]

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots:A universal power law behavior,” J. Chem. Phys. 112, 3117–3120 (2000).
[CrossRef]

Gerion, D.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

Gust, A.

R. Arians, T. Kummell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

Hakuta, K.

K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
[CrossRef] [PubMed]

M. Das, A. Shirasaki, K. P. Nayak, M. Morinaga, F. L. Kien, and K. Hakuta, “Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber,” Opt. Express 18, 17154–17164 (2010).
[CrossRef] [PubMed]

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79, 021801 (2009).
[CrossRef]

F. L. Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
[CrossRef]

K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofibre,” N. J. Phys. 10, 053003 (2008).
[CrossRef]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[CrossRef]

Hamann, H. F.

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, ““On”/“off” fluorescence intermittency of single semiconductor quantum dots,” J. Chem. Phys. 115, 1028–1040 (2001).
[CrossRef]

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots:A universal power law behavior,” J. Chem. Phys. 112, 3117–3120 (2000).
[CrossRef]

Harris, T. D.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Hommel, D.

R. Arians, T. Kummell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

Karstens, T.

T. Karstens and K. Kobs, “Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements,” J. Phys. Chem. 84, 1871–1872 (1980).
[CrossRef]

Kawai, Y.

Kien, F. L.

K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
[CrossRef] [PubMed]

M. Das, A. Shirasaki, K. P. Nayak, M. Morinaga, F. L. Kien, and K. Hakuta, “Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber,” Opt. Express 18, 17154–17164 (2010).
[CrossRef] [PubMed]

F. L. Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
[CrossRef]

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79, 021801 (2009).
[CrossRef]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[CrossRef]

Klimov, V. V.

V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004).
[CrossRef]

Kobs, K.

T. Karstens and K. Kobs, “Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements,” J. Phys. Chem. 84, 1871–1872 (1980).
[CrossRef]

Kruse, C.

R. Arians, T. Kummell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

Kummell, T.

R. Arians, T. Kummell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

Kuno, M.

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, ““On”/“off” fluorescence intermittency of single semiconductor quantum dots,” J. Chem. Phys. 115, 1028–1040 (2001).
[CrossRef]

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots:A universal power law behavior,” J. Chem. Phys. 112, 3117–3120 (2000).
[CrossRef]

Liu, Y.

Loudon, R.

R. Loudon, Quantum Theory of Light (Oxford University Press, 2000).

Lounis, B.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Macklin, J. J.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

Melentiev, P. N.

Meng, C.

Miyazaki, H. T.

Moerner, W. E.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

Morinaga, M.

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Nakajima, K.

Nayak, K. P.

Nesbitt, D. J.

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, ““On”/“off” fluorescence intermittency of single semiconductor quantum dots,” J. Chem. Phys. 115, 1028–1040 (2001).
[CrossRef]

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots:A universal power law behavior,” J. Chem. Phys. 112, 3117–3120 (2000).
[CrossRef]

Neuhauser, R.

S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, “Photoluminescence from single semiconductor nanostructures,” Adv. Mater. 11, 1243–1256 (1999).
[CrossRef]

Nirmal, M.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Rauschenbeutel, A.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

Reitz, D.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

Rosen, M.

Al. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78, 1110–1113 (1997).
[CrossRef]

Sague, G.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

Shimizu, K.

S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, “Photoluminescence from single semiconductor nanostructures,” Adv. Mater. 11, 1243–1256 (1999).
[CrossRef]

Shirasaki, A.

Sugimoto, Y.

Tong, L.

Trautman, J. K.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

Vahala, K.

K. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Vetsch, E.

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

Xiao, Y.

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Yu, H.

Zhang, A. P.

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Adv. Mater. (1)

S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, “Photoluminescence from single semiconductor nanostructures,” Adv. Mater. 11, 1243–1256 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

R. Arians, T. Kummell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett. 90, 101114 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, “Photon antibunching in single CdSe/ZnS quantum dot fluorescence,” Chem. Phys. Lett. 329, 399–404 (2000).
[CrossRef]

J. Chem. Phys. (2)

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential “blinking” kinetics of single CdSe quantum dots:A universal power law behavior,” J. Chem. Phys. 112, 3117–3120 (2000).
[CrossRef]

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, ““On”/“off” fluorescence intermittency of single semiconductor quantum dots,” J. Chem. Phys. 115, 1028–1040 (2001).
[CrossRef]

J. Phys. Chem. (1)

T. Karstens and K. Kobs, “Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements,” J. Phys. Chem. 84, 1871–1872 (1980).
[CrossRef]

N. J. Phys. (1)

K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofibre,” N. J. Phys. 10, 053003 (2008).
[CrossRef]

Nature (3)

K. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383, 802–804 (1996).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (5)

F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[CrossRef]

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79, 021801 (2009).
[CrossRef]

V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Phys. Rev. A 69, 013812 (2004).
[CrossRef]

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

F. L. Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80, 053826 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

Al. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78, 1110–1113 (1997).
[CrossRef]

Other (3)

R. Loudon, Quantum Theory of Light (Oxford University Press, 2000).

Invitrogen, Certificate of analysis Q21371MP 834674.

In the company quotation, the quantum efficiency was measured relatively to rhodamine 101. We assume the quantum efficiency of rhodamine 101 to be 100%.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experiment. The nanofiber is located at the central part of a tapered optical fiber. A sub-pico-liter needle-dispenser and an inverted microscope are used for depositing the q-dots on the nanofiber. The q-dots are excited using cw diode-laser at a wavelength of 640 nm. The fluorescence photons from q-dots coupled to the guided mode of the nanofiber are detected through the single mode optical fiber. At one end of the fiber the photon arrival times are recorded by using two-channel single-photon-counter, and at the other end the fluorescence emission spectrum is measured using optical multichannel analyzer (OMA). APD and NPBS denote avalanche-photodiode and non-polarizing beam splitter, respectively.

Fig. 2
Fig. 2

The observed fluorescence photon counts by scanning the focusing point along the nanofiber. The excitation laser intensity was kept at 15 W/cm2. One can clearly see the eight sharp signals along the nanofiber with a spacing of 20 ± 5 μm, which well corresponds to the q-dot placement on the nanofiber. The signals are numbered from 1 to 8.

Fig. 3
Fig. 3

The left column shows the photon counts as a function of time and the right column shows the normalized photon correlations g N ( 2 ) ( τ ) for four positions (3, 4, 5, and 7). Excitation intensity is 50 W/cm2 for the positions of 3, 4, and 5, and 130 W/cm2 for the position 7. The red curves show the exponential fitting of the normalized photon correlations.

Fig. 4
Fig. 4

The emission spectrum for a single q-dot measured at position 3. The excitation intensity is 50 W/cm2. The spectrum reveals, center wavelength is at 796 nm and the spectral width is 52 nm FWHM.

Fig. 5
Fig. 5

Schematic energy-level diagram for the photo-emission process of q-dots. The gray non-radiative relaxation process is assumed to be very fast.

Fig. 6
Fig. 6

The observed anti-bunching recovery rates (1/T) for different excitation laser intensities at positions 3 (red circles), 4 (blue triangles), 5 (black squares) and 7 (green triangles). The solid lines show the linear fits to the data.

Fig. 7
Fig. 7

The observed fluorescence photon-count rate for different excitation intensities at the four positions 3 (red circles), 4 (blue triangles), 5 (black squares) and 7 (green triangles). The observed photon counts are fitted (dashed curves) using Eq. (3).

Tables (1)

Tables Icon

Table 1 Obtained Parameters for q-Dots on an Optical Nanofiber

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N ˙ 1 = α I N 0 N 1 τ
N 1 ( t ) = α I α I + 1 / τ { 1 exp ( t T ) } 1 / T = α I + 1 / τ
n fiber ( t ) = N 1 ( t ) × 1 τ r × η c = η q η c τ α I α I + 1 / τ { 1 exp ( t T ) }
n obs ( I ) = η A P D κ n S ( I ) 2 = η A P D κ η q η c 2 τ α I α I + 1 / τ = n o b s ( ) α I α I + 1 / τ

Metrics