Abstract

We have used injection locking to multiply the repetition rate of a passively mode-locked femtosecond fiber laser from 40 MHz to 1 GHz while preserving optical phase coherence between the master laser and the slave output. The system is implemented almost completely in fiber and incorporates gain and passive saturable absorption. The slave repetition rate is set to a rational harmonic of the master repetition rate, inducing pulse formation at the least common multiple of the master and slave repetition rates.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326(5953), 681 (2009). http://www.sciencemag.org/content/326/5953/681.full.pdf , URL http://www.sciencemag.org/content/326/5953/681.abstract .
    [CrossRef] [PubMed]
  2. A. J. Benedick, G. Chang, J. R. Birge, L.-J. Chen, A. G. Glenday, C.-H. Li, D. F. Phillips, A. Szentgyorgyi, S. Korzennik, G. Furesz, R. L. Walsworth, and F. X. Kärtner, “Visible wavelength astro-comb,” Opt. Express 18(18), 19175–19184 (2010). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-18-18-19175 .
    [CrossRef] [PubMed]
  3. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595–1599 (2006).
    [CrossRef] [PubMed]
  4. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon. 4, 760–766 (2010).
    [CrossRef]
  5. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
    [CrossRef]
  6. J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 μm with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13155 .
    [CrossRef] [PubMed]
  7. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-19-7-6155 .
    [CrossRef] [PubMed]
  8. D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008). 10.1140/epjd/e2008-00099-9, URL http://dx.doi.org/10.1140/epjd/e2008-00099-9 .
    [CrossRef]
  9. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry-Pérot filter cavities for wide-spaced frequency combs withlarge spectral bandwidth,” Applied Physics B: Lasers and Optics 96, 251–256 (2009). 10.1007/s00340-009-3374-6, URL http://dx.doi.org/10.1007/s00340-009-3374-6 .
    [CrossRef]
  10. G. T. Harvey and L. F. Mollenauer, “Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission,” Opt. Lett. 18(2), 107–109 (1993). URL http://ol.osa.org/abstract.cfm?URI=ol-18-2-107 .
    [CrossRef] [PubMed]
  11. S. Gee, F. Quinlan, S. Ozharar, and P. Delfyett, “Simultaneous optical comb frequency stabilization and super-mode noise suppression of harmonically mode-locked semiconductor ring laser using an intracavity etalon,” IEEE Photon. Technol. Lett. 17(1), 199–201 (2005).
    [CrossRef]
  12. M. Margalit, M. Orenstein, and H. Haus, “Injection locking of a passively mode-locked laser,” IEEE J. Quantum Electron. 32(1), 155–160 (1996).
    [CrossRef]
  13. M. Margalit, M. Orenstein, and G. Eisenstein, “High-repetition-rate mode-locked Er-doped fiber lasers by harmonic injection locking,” Opt. Lett. 20(17), 1791–1793 (1995). URL http://ol.osa.org/abstract.cfm?URI=ol-20-17-1791 .
    [CrossRef] [PubMed]
  14. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  15. D. Kielpinski, M. G. Pullen, J. Canning, M. Stevenson, P. S. Westbrook, and K. S. Feder, “Mode-locked picosecond pulse generation from an octave-spanning supercontinuum,” Opt. Express 17(23), 20833–20839 (2009). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-20833 .
    [CrossRef] [PubMed]
  16. E. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
    [CrossRef]
  17. R. Weill, A. Rosen, A. Gordon, O. Gat, and B. Fischer, “Critical Behavior of Light in Mode-Locked Lasers,” Phys. Rev. Lett. 95(1), 013903 (2005).
    [CrossRef] [PubMed]
  18. H. Telle, Frequency control of semiconductor lasers, Chap. 5, pp. 137–172 (Wiley, Hoboken NJ, USA, 1996).
  19. N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs,” J. Opt. Soc. Am. B 24, 1756–1770 (2007).
    [CrossRef]

2011 (1)

2010 (2)

2009 (3)

D. Kielpinski, M. G. Pullen, J. Canning, M. Stevenson, P. S. Westbrook, and K. S. Feder, “Mode-locked picosecond pulse generation from an octave-spanning supercontinuum,” Opt. Express 17(23), 20833–20839 (2009). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-20833 .
[CrossRef] [PubMed]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326(5953), 681 (2009). http://www.sciencemag.org/content/326/5953/681.full.pdf , URL http://www.sciencemag.org/content/326/5953/681.abstract .
[CrossRef] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry-Pérot filter cavities for wide-spaced frequency combs withlarge spectral bandwidth,” Applied Physics B: Lasers and Optics 96, 251–256 (2009). 10.1007/s00340-009-3374-6, URL http://dx.doi.org/10.1007/s00340-009-3374-6 .
[CrossRef]

2008 (1)

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008). 10.1140/epjd/e2008-00099-9, URL http://dx.doi.org/10.1140/epjd/e2008-00099-9 .
[CrossRef]

2007 (2)

2006 (2)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595–1599 (2006).
[CrossRef] [PubMed]

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2005 (3)

S. Gee, F. Quinlan, S. Ozharar, and P. Delfyett, “Simultaneous optical comb frequency stabilization and super-mode noise suppression of harmonically mode-locked semiconductor ring laser using an intracavity etalon,” IEEE Photon. Technol. Lett. 17(1), 199–201 (2005).
[CrossRef]

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

R. Weill, A. Rosen, A. Gordon, O. Gat, and B. Fischer, “Critical Behavior of Light in Mode-Locked Lasers,” Phys. Rev. Lett. 95(1), 013903 (2005).
[CrossRef] [PubMed]

2001 (1)

E. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[CrossRef]

1996 (1)

M. Margalit, M. Orenstein, and H. Haus, “Injection locking of a passively mode-locked laser,” IEEE J. Quantum Electron. 32(1), 155–160 (1996).
[CrossRef]

1995 (1)

1993 (1)

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry-Pérot filter cavities for wide-spaced frequency combs withlarge spectral bandwidth,” Applied Physics B: Lasers and Optics 96, 251–256 (2009). 10.1007/s00340-009-3374-6, URL http://dx.doi.org/10.1007/s00340-009-3374-6 .
[CrossRef]

Bartels, A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326(5953), 681 (2009). http://www.sciencemag.org/content/326/5953/681.full.pdf , URL http://www.sciencemag.org/content/326/5953/681.abstract .
[CrossRef] [PubMed]

Benedick, A. J.

Birge, J. R.

Black, E.

E. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[CrossRef]

Braje, D. A.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008). 10.1140/epjd/e2008-00099-9, URL http://dx.doi.org/10.1140/epjd/e2008-00099-9 .
[CrossRef]

Canning, J.

Chang, G.

Chen, L.-J.

Coen, S.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon. 4, 760–766 (2010).
[CrossRef]

Delfyett, P.

S. Gee, F. Quinlan, S. Ozharar, and P. Delfyett, “Simultaneous optical comb frequency stabilization and super-mode noise suppression of harmonically mode-locked semiconductor ring laser using an intracavity etalon,” IEEE Photon. Technol. Lett. 17(1), 199–201 (2005).
[CrossRef]

Diddams, S. A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326(5953), 681 (2009). http://www.sciencemag.org/content/326/5953/681.full.pdf , URL http://www.sciencemag.org/content/326/5953/681.abstract .
[CrossRef] [PubMed]

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008). 10.1140/epjd/e2008-00099-9, URL http://dx.doi.org/10.1140/epjd/e2008-00099-9 .
[CrossRef]

Dudley, J.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Eisenstein, G.

Feder, K. S.

Fischer, B.

R. Weill, A. Rosen, A. Gordon, O. Gat, and B. Fischer, “Critical Behavior of Light in Mode-Locked Lasers,” Phys. Rev. Lett. 95(1), 013903 (2005).
[CrossRef] [PubMed]

Fortier, T.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008). 10.1140/epjd/e2008-00099-9, URL http://dx.doi.org/10.1140/epjd/e2008-00099-9 .
[CrossRef]

Furesz, G.

Gat, O.

R. Weill, A. Rosen, A. Gordon, O. Gat, and B. Fischer, “Critical Behavior of Light in Mode-Locked Lasers,” Phys. Rev. Lett. 95(1), 013903 (2005).
[CrossRef] [PubMed]

Gee, S.

S. Gee, F. Quinlan, S. Ozharar, and P. Delfyett, “Simultaneous optical comb frequency stabilization and super-mode noise suppression of harmonically mode-locked semiconductor ring laser using an intracavity etalon,” IEEE Photon. Technol. Lett. 17(1), 199–201 (2005).
[CrossRef]

Genty, G.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Glenday, A. G.

Gordon, A.

R. Weill, A. Rosen, A. Gordon, O. Gat, and B. Fischer, “Critical Behavior of Light in Mode-Locked Lasers,” Phys. Rev. Lett. 95(1), 013903 (2005).
[CrossRef] [PubMed]

Hänsch, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry-Pérot filter cavities for wide-spaced frequency combs withlarge spectral bandwidth,” Applied Physics B: Lasers and Optics 96, 251–256 (2009). 10.1007/s00340-009-3374-6, URL http://dx.doi.org/10.1007/s00340-009-3374-6 .
[CrossRef]

Harvey, G. T.

Haus, H.

M. Margalit, M. Orenstein, and H. Haus, “Injection locking of a passively mode-locked laser,” IEEE J. Quantum Electron. 32(1), 155–160 (1996).
[CrossRef]

Heinecke, D.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326(5953), 681 (2009). http://www.sciencemag.org/content/326/5953/681.full.pdf , URL http://www.sciencemag.org/content/326/5953/681.abstract .
[CrossRef] [PubMed]

Holzwarth, R.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry-Pérot filter cavities for wide-spaced frequency combs withlarge spectral bandwidth,” Applied Physics B: Lasers and Optics 96, 251–256 (2009). 10.1007/s00340-009-3374-6, URL http://dx.doi.org/10.1007/s00340-009-3374-6 .
[CrossRef]

Hsu, K.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Inoue, Y.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Jablonski, M.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595–1599 (2006).
[CrossRef] [PubMed]

Kärtner, F. X.

Kielpinski, D.

Kirchner, M. S.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008). 10.1140/epjd/e2008-00099-9, URL http://dx.doi.org/10.1140/epjd/e2008-00099-9 .
[CrossRef]

Korzennik, S.

Kotake, T.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Li, C.-H.

Margalit, M.

Martinez, A.

McFerran, J. J.

Moll, K. D.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595–1599 (2006).
[CrossRef] [PubMed]

Mollenauer, L. F.

Nenadovic, L.

Newbury, N. R.

Orenstein, M.

Osterman, S.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008). 10.1140/epjd/e2008-00099-9, URL http://dx.doi.org/10.1140/epjd/e2008-00099-9 .
[CrossRef]

Ozharar, S.

S. Gee, F. Quinlan, S. Ozharar, and P. Delfyett, “Simultaneous optical comb frequency stabilization and super-mode noise suppression of harmonically mode-locked semiconductor ring laser using an intracavity etalon,” IEEE Photon. Technol. Lett. 17(1), 199–201 (2005).
[CrossRef]

Phillips, D. F.

Pullen, M. G.

Quinlan, F.

S. Gee, F. Quinlan, S. Ozharar, and P. Delfyett, “Simultaneous optical comb frequency stabilization and super-mode noise suppression of harmonically mode-locked semiconductor ring laser using an intracavity etalon,” IEEE Photon. Technol. Lett. 17(1), 199–201 (2005).
[CrossRef]

Rosen, A.

R. Weill, A. Rosen, A. Gordon, O. Gat, and B. Fischer, “Critical Behavior of Light in Mode-Locked Lasers,” Phys. Rev. Lett. 95(1), 013903 (2005).
[CrossRef] [PubMed]

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595–1599 (2006).
[CrossRef] [PubMed]

Schlager, J. B.

Set, S.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry-Pérot filter cavities for wide-spaced frequency combs withlarge spectral bandwidth,” Applied Physics B: Lasers and Optics 96, 251–256 (2009). 10.1007/s00340-009-3374-6, URL http://dx.doi.org/10.1007/s00340-009-3374-6 .
[CrossRef]

Stevenson, M.

Swann, W. C.

Szentgyorgyi, A.

Tanaka, D.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Telle, H.

H. Telle, Frequency control of semiconductor lasers, Chap. 5, pp. 137–172 (Wiley, Hoboken NJ, USA, 1996).

Thorpe, M. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595–1599 (2006).
[CrossRef] [PubMed]

Udem, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry-Pérot filter cavities for wide-spaced frequency combs withlarge spectral bandwidth,” Applied Physics B: Lasers and Optics 96, 251–256 (2009). 10.1007/s00340-009-3374-6, URL http://dx.doi.org/10.1007/s00340-009-3374-6 .
[CrossRef]

Walsworth, R. L.

Weill, R.

R. Weill, A. Rosen, A. Gordon, O. Gat, and B. Fischer, “Critical Behavior of Light in Mode-Locked Lasers,” Phys. Rev. Lett. 95(1), 013903 (2005).
[CrossRef] [PubMed]

Weiner, A. M.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon. 4, 760–766 (2010).
[CrossRef]

Westbrook, P. S.

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry-Pérot filter cavities for wide-spaced frequency combs withlarge spectral bandwidth,” Applied Physics B: Lasers and Optics 96, 251–256 (2009). 10.1007/s00340-009-3374-6, URL http://dx.doi.org/10.1007/s00340-009-3374-6 .
[CrossRef]

Yaguchi, H.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Yamashita, S.

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-19-7-6155 .
[CrossRef] [PubMed]

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Ye, J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595–1599 (2006).
[CrossRef] [PubMed]

Am. J. Phys. (1)

E. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[CrossRef]

Applied Physics B: Lasers and Optics (1)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry-Pérot filter cavities for wide-spaced frequency combs withlarge spectral bandwidth,” Applied Physics B: Lasers and Optics 96, 251–256 (2009). 10.1007/s00340-009-3374-6, URL http://dx.doi.org/10.1007/s00340-009-3374-6 .
[CrossRef]

Eur. Phys. J. D (1)

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57–66 (2008). 10.1140/epjd/e2008-00099-9, URL http://dx.doi.org/10.1140/epjd/e2008-00099-9 .
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Margalit, M. Orenstein, and H. Haus, “Injection locking of a passively mode-locked laser,” IEEE J. Quantum Electron. 32(1), 155–160 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Gee, F. Quinlan, S. Ozharar, and P. Delfyett, “Simultaneous optical comb frequency stabilization and super-mode noise suppression of harmonically mode-locked semiconductor ring laser using an intracavity etalon,” IEEE Photon. Technol. Lett. 17(1), 199–201 (2005).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature Photon. (1)

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon. 4, 760–766 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

R. Weill, A. Rosen, A. Gordon, O. Gat, and B. Fischer, “Critical Behavior of Light in Mode-Locked Lasers,” Phys. Rev. Lett. 95(1), 013903 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Science (2)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science 311, 1595–1599 (2006).
[CrossRef] [PubMed]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326(5953), 681 (2009). http://www.sciencemag.org/content/326/5953/681.full.pdf , URL http://www.sciencemag.org/content/326/5953/681.abstract .
[CrossRef] [PubMed]

Other (1)

H. Telle, Frequency control of semiconductor lasers, Chap. 5, pp. 137–172 (Wiley, Hoboken NJ, USA, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup. Optical connections are shown as solid lines, electrical connections as dashed lines. EOM: electro-optic modulator; PD: photodiode; LO: mixer local oscillator input; SESAM: semiconductor saturable absorber.

Fig. 2
Fig. 2

Left: RF spectrum of the system output. The main peak at 1.01 GHz is associated with the pulse repetition rate. Supermode noise peaks occur at the fundamental repetition rates of master and slave resonators, but are suppressed by > 25 dB. Right: Measurement of the 1.01 GHz peak at higher frequency resolution. The −3 dB width of the signal is consistent with the 1 kHz resolution limit of the RF spectrum analyser.

Fig. 3
Fig. 3

Left: Optical spectrum of the injection-locked output (black line) and the seed light (blue line). The traces are offset for clarity. The FWHM bandwidth is ∼ 5.5 nm. Right: Autocorrelation trace of the amplified output from the active filter.

Fig. 4
Fig. 4

Measurement of the optical frequency noise added by repetition rate multiplication. An optical beatnote is obtained by heterodyning the system output with the seed oscillator. The −3 dB width of the beatnote is consistent with the 1 kHz resolution limit of the RF spectrum analyzer. The beatnote strength is sufficient to demonstrate optical phase coherence in the multiplication process.

Fig. 5
Fig. 5

Schematic of Y-cavity laser exploiting self-injection to achieve high repetition rate. The vernier condition is satisfied for correct adjustment of the relative path length ΔL between the two cavity branches at left.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f S / f M = p / q , p , q integers , p , q relatively prime
ν S 0 = ν M 0 + m p q f M m integer

Metrics