Abstract

The semimetal antimony, with a plasma frequency ~80 times less than that of gold, is potentially useful as a host for infrared surface polaritons (SPs). Relevant IR SP properties, including the frequency-dependent propagation length and penetration depths for fields into the media on either side of the interface, were determined from optical constants measured on optically-thick thermally-evaporated Sb films over the wavelength range 1 to 40 μm. Plasma and carrier relaxation frequencies were determined from Drude-model fits to these data. The real part of the permittivity is negative for wavelengths beyond 11 μm. Distinct resonant decreases in specular reflected intensity were observed for Sb lamellar gratings in the wavelength range of 6 to 11 μm, where the real part of the permittivity is positive. Both resonance angles and the angular reflectance spectral line shapes are in agreement with theory for excitation of bound surface electromagnetic waves (SPs). Finite element method (FEM) electrodynamic simulations indicate the existence of SP modes under conditions matching the experiments. FEM results also show that such waves depend on having a significant imaginary part of the permittivity, as has been noted earlier for the case of surface exciton polaritons.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Brillante, I. Pockrand, M. R. Philpott, and J. D. Swalen, “Experimental Observation of Exciton Surface Polaritons on a Polymerized Diacetylene Crystal,” Chem. Phys. Lett. 57(3), 395–399 (1978).
    [CrossRef]
  2. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range Surface Modes Supported By Thin Films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
    [CrossRef] [PubMed]
  3. F. Yang, G. W. Bradberry, and J. R. Sambles, “Experimental Observation of Surface Exciton-polaritons on Vanadium using Infrared Radiation,” J. Mod. Opt. 37(9), 1545–1553 (1990).
    [CrossRef]
  4. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
    [CrossRef] [PubMed]
  5. J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730–734 (2010).
    [CrossRef]
  6. M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
    [CrossRef]
  7. J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
    [CrossRef]
  8. H. Raether, “Surface plasma oscillations and their applications,” in Physics of Thin Films (Academic Press, New York, 1977) 9, 145–261.
  9. J. W. Cleary, G. Medhi, R. E. Peale, and W. R. Buchwald, “Long-wave infrared surface plasmon grating coupler,” Appl. Opt. 49(16), 3102–3110 (2010).
    [CrossRef] [PubMed]
  10. P. Halevi, in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, Chichester, 1982).
  11. M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations, (Cambridge Univ. Cambridge UK, 1988).
  12. E. B. Sernelius, Surface modes in Physics, (Wiley-Vch, Berlin, 2000).
  13. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, 1988).
  14. K. Welford, “Surface plasmon-polaritons and their uses,” Opt. Quantum Electron. 23(1), 1–27 (1991).
    [CrossRef]
  15. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4(10), 1275–1297 (1965).
    [CrossRef]
  16. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media, Course of theoretical physics vol. 8 (Butterworth-Heinenann, Oxford, 2002), Sect. 87.
  17. E. B. Saff and A. D. Snider, Fundamentals of complex analysis with applications to engineering and science, 3rd ed. (Pearson Education,Upper Saddle River, New Jersey, 2003).
  18. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996).
  19. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew, Heidelberg, 2005).
  20. T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
    [CrossRef]
  21. L. Harris and F. R. Corrigan, “Optical and electrical properties of antimony deposits,” J. Opt. Soc. Am. 54(12), 1437–1441 (1964).
    [CrossRef]
  22. I. N. Shkliarevskii, A. A. Avdeenki, and V. G. Padalka, “Measurements of the Optical Constants of Antimony in the Infrared Region of the Spectrum at Temperatures of 290° and 110°,” Opt. Spectrosc. 6, 336 (1959).
  23. J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306, 767306-11 (2010).
    [CrossRef]
  24. J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS 1133, 1133-AA10-03 (2008).

2011 (2)

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

2010 (3)

2008 (2)

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
[CrossRef] [PubMed]

J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS 1133, 1133-AA10-03 (2008).

1991 (2)

K. Welford, “Surface plasmon-polaritons and their uses,” Opt. Quantum Electron. 23(1), 1–27 (1991).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range Surface Modes Supported By Thin Films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[CrossRef] [PubMed]

1990 (1)

F. Yang, G. W. Bradberry, and J. R. Sambles, “Experimental Observation of Surface Exciton-polaritons on Vanadium using Infrared Radiation,” J. Mod. Opt. 37(9), 1545–1553 (1990).
[CrossRef]

1978 (1)

A. Brillante, I. Pockrand, M. R. Philpott, and J. D. Swalen, “Experimental Observation of Exciton Surface Polaritons on a Polymerized Diacetylene Crystal,” Chem. Phys. Lett. 57(3), 395–399 (1978).
[CrossRef]

1974 (1)

T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
[CrossRef]

1965 (1)

1964 (1)

1959 (1)

I. N. Shkliarevskii, A. A. Avdeenki, and V. G. Padalka, “Measurements of the Optical Constants of Antimony in the Infrared Region of the Spectrum at Temperatures of 290° and 110°,” Opt. Spectrosc. 6, 336 (1959).

Avdeenki, A. A.

I. N. Shkliarevskii, A. A. Avdeenki, and V. G. Padalka, “Measurements of the Optical Constants of Antimony in the Infrared Region of the Spectrum at Temperatures of 290° and 110°,” Opt. Spectrosc. 6, 336 (1959).

Boreman, G. D

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

Boreman, G. D.

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730–734 (2010).
[CrossRef]

J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS 1133, 1133-AA10-03 (2008).

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range Surface Modes Supported By Thin Films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[CrossRef] [PubMed]

F. Yang, G. W. Bradberry, and J. R. Sambles, “Experimental Observation of Surface Exciton-polaritons on Vanadium using Infrared Radiation,” J. Mod. Opt. 37(9), 1545–1553 (1990).
[CrossRef]

Brillante, A.

A. Brillante, I. Pockrand, M. R. Philpott, and J. D. Swalen, “Experimental Observation of Exciton Surface Polaritons on a Polymerized Diacetylene Crystal,” Chem. Phys. Lett. 57(3), 395–399 (1978).
[CrossRef]

Buchwald, W.

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306, 767306-11 (2010).
[CrossRef]

J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS 1133, 1133-AA10-03 (2008).

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
[CrossRef] [PubMed]

Buchwald, W. R.

Cleary, J. W.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306, 767306-11 (2010).
[CrossRef]

J. W. Cleary, G. Medhi, R. E. Peale, and W. R. Buchwald, “Long-wave infrared surface plasmon grating coupler,” Appl. Opt. 49(16), 3102–3110 (2010).
[CrossRef] [PubMed]

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730–734 (2010).
[CrossRef]

J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS 1133, 1133-AA10-03 (2008).

Corrigan, F. R.

Davids, P. S.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

Drehman, A.

Edwards, O.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306, 767306-11 (2010).
[CrossRef]

Emmony, D. C.

T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
[CrossRef]

Fox, T. J.

T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
[CrossRef]

Ginn, J. C.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

Harris, L.

Hessel, A.

Howson, R. P.

T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
[CrossRef]

Ishigami, M.

Jarecki, R. L.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

Medhi, G.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306, 767306-11 (2010).
[CrossRef]

J. W. Cleary, G. Medhi, R. E. Peale, and W. R. Buchwald, “Long-wave infrared surface plasmon grating coupler,” Appl. Opt. 49(16), 3102–3110 (2010).
[CrossRef] [PubMed]

Oladeji, I.

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306, 767306-11 (2010).
[CrossRef]

Oliner, A. A.

Padalka, V. G.

I. N. Shkliarevskii, A. A. Avdeenki, and V. G. Padalka, “Measurements of the Optical Constants of Antimony in the Infrared Region of the Spectrum at Temperatures of 290° and 110°,” Opt. Spectrosc. 6, 336 (1959).

Peale, R. E.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306, 767306-11 (2010).
[CrossRef]

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730–734 (2010).
[CrossRef]

J. W. Cleary, G. Medhi, R. E. Peale, and W. R. Buchwald, “Long-wave infrared surface plasmon grating coupler,” Appl. Opt. 49(16), 3102–3110 (2010).
[CrossRef] [PubMed]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
[CrossRef] [PubMed]

J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS 1133, 1133-AA10-03 (2008).

Philpott, M. R.

A. Brillante, I. Pockrand, M. R. Philpott, and J. D. Swalen, “Experimental Observation of Exciton Surface Polaritons on a Polymerized Diacetylene Crystal,” Chem. Phys. Lett. 57(3), 395–399 (1978).
[CrossRef]

Pockrand, I.

A. Brillante, I. Pockrand, M. R. Philpott, and J. D. Swalen, “Experimental Observation of Exciton Surface Polaritons on a Polymerized Diacetylene Crystal,” Chem. Phys. Lett. 57(3), 395–399 (1978).
[CrossRef]

Sambles, J. R.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range Surface Modes Supported By Thin Films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[CrossRef] [PubMed]

F. Yang, G. W. Bradberry, and J. R. Sambles, “Experimental Observation of Surface Exciton-polaritons on Vanadium using Infrared Radiation,” J. Mod. Opt. 37(9), 1545–1553 (1990).
[CrossRef]

Shahzad, M.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

Shaner, E. A.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

Shelton, D.

J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS 1133, 1133-AA10-03 (2008).

Shelton, D. J.

Shkliarevskii, I. N.

I. N. Shkliarevskii, A. A. Avdeenki, and V. G. Padalka, “Measurements of the Optical Constants of Antimony in the Infrared Region of the Spectrum at Temperatures of 290° and 110°,” Opt. Spectrosc. 6, 336 (1959).

Smith, C. W.

Soref, R.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730–734 (2010).
[CrossRef]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
[CrossRef] [PubMed]

J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS 1133, 1133-AA10-03 (2008).

Swalen, J. D.

A. Brillante, I. Pockrand, M. R. Philpott, and J. D. Swalen, “Experimental Observation of Exciton Surface Polaritons on a Polymerized Diacetylene Crystal,” Chem. Phys. Lett. 57(3), 395–399 (1978).
[CrossRef]

Welford, K.

K. Welford, “Surface plasmon-polaritons and their uses,” Opt. Quantum Electron. 23(1), 1–27 (1991).
[CrossRef]

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range Surface Modes Supported By Thin Films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[CrossRef] [PubMed]

F. Yang, G. W. Bradberry, and J. R. Sambles, “Experimental Observation of Surface Exciton-polaritons on Vanadium using Infrared Radiation,” J. Mod. Opt. 37(9), 1545–1553 (1990).
[CrossRef]

Appl. Opt. (2)

Chem. Phys. Lett. (1)

A. Brillante, I. Pockrand, M. R. Philpott, and J. D. Swalen, “Experimental Observation of Exciton Surface Polaritons on a Polymerized Diacetylene Crystal,” Chem. Phys. Lett. 57(3), 395–399 (1978).
[CrossRef]

J. Appl. Phys. (2)

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[CrossRef]

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[CrossRef]

J. Mod. Opt. (1)

F. Yang, G. W. Bradberry, and J. R. Sambles, “Experimental Observation of Surface Exciton-polaritons on Vanadium using Infrared Radiation,” J. Mod. Opt. 37(9), 1545–1553 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys. 7(13), 1864–1872 (1974).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (1)

K. Welford, “Surface plasmon-polaritons and their uses,” Opt. Quantum Electron. 23(1), 1–27 (1991).
[CrossRef]

Opt. Spectrosc. (1)

I. N. Shkliarevskii, A. A. Avdeenki, and V. G. Padalka, “Measurements of the Optical Constants of Antimony in the Infrared Region of the Spectrum at Temperatures of 290° and 110°,” Opt. Spectrosc. 6, 336 (1959).

Phys. Rev. B Condens. Matter (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range Surface Modes Supported By Thin Films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[CrossRef] [PubMed]

Proc. MRS (1)

J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS 1133, 1133-AA10-03 (2008).

Proc. SPIE (1)

J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE 7673, 767306, 767306-11 (2010).
[CrossRef]

Other (9)

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media, Course of theoretical physics vol. 8 (Butterworth-Heinenann, Oxford, 2002), Sect. 87.

E. B. Saff and A. D. Snider, Fundamentals of complex analysis with applications to engineering and science, 3rd ed. (Pearson Education,Upper Saddle River, New Jersey, 2003).

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996).

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew, Heidelberg, 2005).

H. Raether, “Surface plasma oscillations and their applications,” in Physics of Thin Films (Academic Press, New York, 1977) 9, 145–261.

P. Halevi, in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, Chichester, 1982).

M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations, (Cambridge Univ. Cambridge UK, 1988).

E. B. Sernelius, Surface modes in Physics, (Wiley-Vch, Berlin, 2000).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(left) Scanning electron microscope image of a silicon grating substrate with 50% duty cycle, 20 μm period and 1 μm amplitude. (center) Sb-coating on the same grating structure with the coating partially removed in upper central region. (right) Schematic of SP experiments completed in this work. The sources used were a CO2 and quantum cascade lasers with incident light being p-polarized as indicated by E. A power meter and a HgCdTe detector were used to measure the specular reflection from the grating as a function of θ. The measured profile pictured is of a 2-μm-amplitude Sb coated grating.

Fig. 2
Fig. 2

(left) Real part of permittivity for Sb. (right) Imaginary part. The prior measurements are from References [2022]. The vertical line indicates the zero crossing of the real part of the permittivity.

Fig. 3
Fig. 3

Difference between grazing incidence light line and the SP dispersion curve for Sb as calculated from empirical permittivities. Laser wavelengths used in this work are indicated by vertical dashed lines. Positive y-axis values indicate positive permittivity values.

Fig. 4
Fig. 4

Angular reflectance spectra of Sb gratings at QCL and CO2 laser wavelengths. Smooth curves are calculated reflectance spectra. Grating amplitudes used (from the top) were 2, 1, and 0.5 μm.

Fig. 5
Fig. 5

Spatial electric field magnitude in [V/m] of surface polaritons on an antimony grating for incident photons of wavelengths of 12 μm (upper) and 10.6 μm (lower), which fall into the regimes of εc′ < 0 and εc′ > 0, respectively. The incident light falls on a grating of finite width (250 μm outside the plot to the left) with a period of 20 μm, 50% duty cycle, and 2 μm amplitude. The SP modes pictured are calculated for the first order resonances occurring at incidence angles 23.6° and 28.1°, respectively. The axes units are meters.

Fig. 6
Fig. 6

Spatial electric field magnitude in [V/m] of surface polaritons on an antimony grating at a wavelength of 10.6 μm. The grating has a period of 20 μm, with a 50% duty cycle and 2 μm amplitude. The SP modes pictured are calculated using a complex permittivity at 28.1° incidence (upper), real permittivity at 28.1° (middle), and real permittivity at 24.6° (lower). Axes units are meters.

Fig. 7
Fig. 7

Surface polariton properties for antimony. (left) Energy propagation length as a function of free space wavelength. (right) Field penetration depths versus free space wavelength. Upper curves show penetration depth into air while the lower curves show penetration depth into the conductor.

Tables (1)

Tables Icon

Table 1 Empirical Optical Parameters of Sb for the Four Laser Wavelengths Used

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H y = H o Exp[ i( K sp x K zd,zc | z | ) ],
K SP ( ω )= ω c ε d ε c ε d + ε c .
K zd,zc = K SP 2 ε d,c ( ω c ) 2 ,
L x = 1 2Im( K SP ( ω ) ) .
L d,c = [ ω c Im ε d,c 2 ε d + ε c ] 1 .
sin( θ )+ mλ p =± c ω Re[ K SP ] ,
R [ abs( 1 4cosθ Mζ( D 0 D 1 1 D 1 1 ) ) ] 2 .
D s = 2 M [ 1+ 1 ζ 1 ( sinθ+ sλ p ) 2 ].
ζ=[ i 1 ] ( ε c ' 2 + ε c ' ' 2 ) 1/4 { cos( ϕ 2 )isin( ϕ 2 ) } for ε c '<0 ε c '>0 ,
ε c = ε c +i ε c = ε [ 1 ( ω p 2 / ω 2 ) 1+i( ω τ /ω ) ],

Metrics