Abstract

We investigate the ridge-width dependence of the threshold of Quantum Cascade lasers fabricated by wet and dry etching, respectively. The sloped sidewalls resulting from wet etching affect the threshold in two ways as the ridge gets narrower. First, the transverse modes are deeper in the substrate, hence reducing the optical confinement factor. Second, more important, a non-negligible field exists in the lossy SiO2 insulation layer, as a result of transverse magnetic mode coupling to the surface plamon mode at the insulator/metal surface, which increases the waveguide loss. By contrast, dry etching is anisotropic and leads to waveguides with vertical sidewalls, which avoids the shift of the modes to the substrate layer and coupling to the surface plasmons, resulting in improved threshold compared with wet-etched lasers, e.g., for narrow ridge widths below 20 µm, the threshold of a 14 µm wide λ ≈14 µm laser by dry etching is ~60% lower than that of a wet-etched laser of the same width, at 80 K.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 µm),” Opt. Eng. 49(11), 111106 (2010).
    [CrossRef]
  2. N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
    [CrossRef]
  3. S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007).
    [CrossRef]
  4. K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0 values (– 450) of long wavelength (–5 µm), low-threshold-current-density quantum cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
    [CrossRef]
  5. X. Huang, W. O. Charles, and C. Gmachl, “Temperature-insensitive long-wavelength (λ ≈14 µm) Quantum Cascade lasers with low threshold,” Opt. Express 19(9), 8297–8302 (2011).
    [CrossRef] [PubMed]
  6. P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm on indium phosphide,” Appl. Phys. Lett. 98(21), 211118 (2011).
    [CrossRef]
  7. S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high-temperature continuous-wave quantum-cascade laser operation,” IEEE Photon. Technol. Lett. 16(3), 744–746 (2004).
    [CrossRef]
  8. W. Bewley, C. Canedy, C. S. Kim, M. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. Meyer, “Ridge-width dependence of midinfrared interband cascade laser characteristics,” Opt. Eng. 49(11), 111116 (2010).
    [CrossRef]
  9. R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-µm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
    [CrossRef]
  10. C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength (λ ≃ 13 µm) quantum cascade lasers,” Electron. Lett. 34(11), 1103–1104 (1998).
    [CrossRef]
  11. A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
    [CrossRef]
  12. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
    [CrossRef] [PubMed]
  13. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  14. F. Toor, D. L. Sivco, H. E. Liu, and C. F. Gmachl, “Effect of waveguide sidewall roughness on the threshold current density and slope efficiency of quantum cascade lasers,” Appl. Phys. Lett. 93(3), 031104 (2008).
    [CrossRef]
  15. Z. Liu, “Room-temperature, continuous-wave Quantum Cascade lasers in the first and second atmospheric windows,” Ph.D. dissertation (Princeton University, 2008)

2011

X. Huang, W. O. Charles, and C. Gmachl, “Temperature-insensitive long-wavelength (λ ≈14 µm) Quantum Cascade lasers with low threshold,” Opt. Express 19(9), 8297–8302 (2011).
[CrossRef] [PubMed]

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm on indium phosphide,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

2010

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 µm),” Opt. Eng. 49(11), 111106 (2010).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

W. Bewley, C. Canedy, C. S. Kim, M. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. Meyer, “Ridge-width dependence of midinfrared interband cascade laser characteristics,” Opt. Eng. 49(11), 111116 (2010).
[CrossRef]

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-µm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0 values (– 450) of long wavelength (–5 µm), low-threshold-current-density quantum cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
[CrossRef]

2008

F. Toor, D. L. Sivco, H. E. Liu, and C. F. Gmachl, “Effect of waveguide sidewall roughness on the threshold current density and slope efficiency of quantum cascade lasers,” Appl. Phys. Lett. 93(3), 031104 (2008).
[CrossRef]

2007

R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
[CrossRef] [PubMed]

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[CrossRef]

2004

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high-temperature continuous-wave quantum-cascade laser operation,” IEEE Photon. Technol. Lett. 16(3), 744–746 (2004).
[CrossRef]

1999

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

1998

C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength (λ ≃ 13 µm) quantum cascade lasers,” Electron. Lett. 34(11), 1103–1104 (1998).
[CrossRef]

Abell, J.

W. Bewley, C. Canedy, C. S. Kim, M. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. Meyer, “Ridge-width dependence of midinfrared interband cascade laser characteristics,” Opt. Eng. 49(11), 111116 (2010).
[CrossRef]

Bai, Y.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

Bandyopadhyay, N.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

Bewley, W.

W. Bewley, C. Canedy, C. S. Kim, M. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. Meyer, “Ridge-width dependence of midinfrared interband cascade laser characteristics,” Opt. Eng. 49(11), 111116 (2010).
[CrossRef]

Bradshaw, J. L.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-µm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

Canedy, C.

W. Bewley, C. Canedy, C. S. Kim, M. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. Meyer, “Ridge-width dependence of midinfrared interband cascade laser characteristics,” Opt. Eng. 49(11), 111116 (2010).
[CrossRef]

Capasso, F.

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength (λ ≃ 13 µm) quantum cascade lasers,” Electron. Lett. 34(11), 1103–1104 (1998).
[CrossRef]

Charles, W. O.

Cho, A. Y.

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength (λ ≃ 13 µm) quantum cascade lasers,” Electron. Lett. 34(11), 1103–1104 (1998).
[CrossRef]

David, J.

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high-temperature continuous-wave quantum-cascade laser operation,” IEEE Photon. Technol. Lett. 16(3), 744–746 (2004).
[CrossRef]

Doris, L.

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high-temperature continuous-wave quantum-cascade laser operation,” IEEE Photon. Technol. Lett. 16(3), 744–746 (2004).
[CrossRef]

Edamura, T.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0 values (– 450) of long wavelength (–5 µm), low-threshold-current-density quantum cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
[CrossRef]

Evans, A.

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[CrossRef]

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high-temperature continuous-wave quantum-cascade laser operation,” IEEE Photon. Technol. Lett. 16(3), 744–746 (2004).
[CrossRef]

Fan, J.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 µm),” Opt. Eng. 49(11), 111106 (2010).
[CrossRef]

Forchel, A.

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm on indium phosphide,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

Friedl, J.

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm on indium phosphide,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

Fuchs, P.

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm on indium phosphide,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

Fujita, K.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0 values (– 450) of long wavelength (–5 µm), low-threshold-current-density quantum cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
[CrossRef]

Furuta, S.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0 values (– 450) of long wavelength (–5 µm), low-threshold-current-density quantum cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
[CrossRef]

Gmachl, C.

X. Huang, W. O. Charles, and C. Gmachl, “Temperature-insensitive long-wavelength (λ ≈14 µm) Quantum Cascade lasers with low threshold,” Opt. Express 19(9), 8297–8302 (2011).
[CrossRef] [PubMed]

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength (λ ≃ 13 µm) quantum cascade lasers,” Electron. Lett. 34(11), 1103–1104 (1998).
[CrossRef]

Gmachl, C. F.

F. Toor, D. L. Sivco, H. E. Liu, and C. F. Gmachl, “Effect of waveguide sidewall roughness on the threshold current density and slope efficiency of quantum cascade lasers,” Appl. Phys. Lett. 93(3), 031104 (2008).
[CrossRef]

Gokden, B.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

Höfling, S.

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm on indium phosphide,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

Huang, X.

Hutchinson, A. L.

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength (λ ≃ 13 µm) quantum cascade lasers,” Electron. Lett. 34(11), 1103–1104 (1998).
[CrossRef]

Jonasz, M.

Kim, C. S.

W. Bewley, C. Canedy, C. S. Kim, M. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. Meyer, “Ridge-width dependence of midinfrared interband cascade laser characteristics,” Opt. Eng. 49(11), 111116 (2010).
[CrossRef]

Kim, M.

W. Bewley, C. Canedy, C. S. Kim, M. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. Meyer, “Ridge-width dependence of midinfrared interband cascade laser characteristics,” Opt. Eng. 49(11), 111116 (2010).
[CrossRef]

Kitamura, R.

Koeth, J.

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm on indium phosphide,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

Lascola, K. M.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-µm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

Leavitt, R. P.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-µm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

Lindle, J. R.

W. Bewley, C. Canedy, C. S. Kim, M. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. Meyer, “Ridge-width dependence of midinfrared interband cascade laser characteristics,” Opt. Eng. 49(11), 111116 (2010).
[CrossRef]

Liu, H. E.

F. Toor, D. L. Sivco, H. E. Liu, and C. F. Gmachl, “Effect of waveguide sidewall roughness on the threshold current density and slope efficiency of quantum cascade lasers,” Appl. Phys. Lett. 93(3), 031104 (2008).
[CrossRef]

Meissner, G. P.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-µm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

Meyer, J.

W. Bewley, C. Canedy, C. S. Kim, M. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. Meyer, “Ridge-width dependence of midinfrared interband cascade laser characteristics,” Opt. Eng. 49(11), 111116 (2010).
[CrossRef]

Micalizzi, F.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-µm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

Myzaferi, A.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

Pham, J. T.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-µm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

Pilon, L.

Razeghi, M.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[CrossRef]

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high-temperature continuous-wave quantum-cascade laser operation,” IEEE Photon. Technol. Lett. 16(3), 744–746 (2004).
[CrossRef]

Semmel, J.

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm on indium phosphide,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

Sivco, D. L.

F. Toor, D. L. Sivco, H. E. Liu, and C. F. Gmachl, “Effect of waveguide sidewall roughness on the threshold current density and slope efficiency of quantum cascade lasers,” Appl. Phys. Lett. 93(3), 031104 (2008).
[CrossRef]

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength (λ ≃ 13 µm) quantum cascade lasers,” Electron. Lett. 34(11), 1103–1104 (1998).
[CrossRef]

Slivken, S.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[CrossRef]

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high-temperature continuous-wave quantum-cascade laser operation,” IEEE Photon. Technol. Lett. 16(3), 744–746 (2004).
[CrossRef]

Sugiyama, A.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0 values (– 450) of long wavelength (–5 µm), low-threshold-current-density quantum cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
[CrossRef]

Toor, F.

F. Toor, D. L. Sivco, H. E. Liu, and C. F. Gmachl, “Effect of waveguide sidewall roughness on the threshold current density and slope efficiency of quantum cascade lasers,” Appl. Phys. Lett. 93(3), 031104 (2008).
[CrossRef]

Towner, F. J.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-µm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

Tredicucci, A.

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength (λ ≃ 13 µm) quantum cascade lasers,” Electron. Lett. 34(11), 1103–1104 (1998).
[CrossRef]

Troccoli, M.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 µm),” Opt. Eng. 49(11), 111106 (2010).
[CrossRef]

Tsao, S.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

Vurgaftman, I.

W. Bewley, C. Canedy, C. S. Kim, M. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. Meyer, “Ridge-width dependence of midinfrared interband cascade laser characteristics,” Opt. Eng. 49(11), 111116 (2010).
[CrossRef]

Wang, X.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 µm),” Opt. Eng. 49(11), 111106 (2010).
[CrossRef]

Worschech, L.

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm on indium phosphide,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

Yamanishi, M.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0 values (– 450) of long wavelength (–5 µm), low-threshold-current-density quantum cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
[CrossRef]

Yu, J. S.

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high-temperature continuous-wave quantum-cascade laser operation,” IEEE Photon. Technol. Lett. 16(3), 744–746 (2004).
[CrossRef]

Zhang, W.

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

F. Toor, D. L. Sivco, H. E. Liu, and C. F. Gmachl, “Effect of waveguide sidewall roughness on the threshold current density and slope efficiency of quantum cascade lasers,” Appl. Phys. Lett. 93(3), 031104 (2008).
[CrossRef]

A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength superlattice quantum cascade lasers at λ ≃ 17 μm,” Appl. Phys. Lett. 74(5), 638–640 (1999).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ~ 3.76 µm,” Appl. Phys. Lett. 97(13), 131117 (2010).
[CrossRef]

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[CrossRef]

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0 values (– 450) of long wavelength (–5 µm), low-threshold-current-density quantum cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010).
[CrossRef]

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm on indium phosphide,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

Electron. Lett.

C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long wavelength (λ ≃ 13 µm) quantum cascade lasers,” Electron. Lett. 34(11), 1103–1104 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high-temperature continuous-wave quantum-cascade laser operation,” IEEE Photon. Technol. Lett. 16(3), 744–746 (2004).
[CrossRef]

Opt. Eng.

W. Bewley, C. Canedy, C. S. Kim, M. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. Meyer, “Ridge-width dependence of midinfrared interband cascade laser characteristics,” Opt. Eng. 49(11), 111116 (2010).
[CrossRef]

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-µm wavelength band using strained active regions,” Opt. Eng. 49(11), 111109 (2010).
[CrossRef]

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 µm),” Opt. Eng. 49(11), 111106 (2010).
[CrossRef]

Opt. Express

Other

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Z. Liu, “Room-temperature, continuous-wave Quantum Cascade lasers in the first and second atmospheric windows,” Ph.D. dissertation (Princeton University, 2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SEM picture of the cleaved laser facet of an 8 µm wide laser. (b) 2D simulation of the fundamental mode in an 8 µm wide QC laser. (c) SEM picture of the cleaved laser facet of a 24 µm wide laser. (d) 2D simulation of optical transverse mode in a 24 µm wide wet-etched QC laser

Fig. 2
Fig. 2

2D simulation results of confinement factor, waveguide loss, and loss-confinement ratio dependence on ridge width. The FP cavity length is assumed to be 1.5 mm for mirror loss αm calculation.

Fig. 3
Fig. 3

(a) Threshold current density of 1.5 mm long, wet-etched QC lasers with different ridge widths from 14µm to 35µm in pulsed mode, from 80 K to 350 K. The pulse width is 100 ns, and the repetition rate is 4 kHz. (b) Simulated loss-confinement factor ratio and measured threshold current density at 80 K, of 1.5 mm long, wet-etched QC lasers with different ridge widths from 14µm to 35µm. The measured threshold current density versus the ridge width is plotted with error bars obtained from the threshold variations for lasers of the same ridge width.

Fig. 4
Fig. 4

(a) SEM picture of the cleaved laser facet of an 8 µm wide dry-etched laser. (b) 2D simulation of the fundamental mode in an 8 µm wide dry-etched QC laser.

Fig. 5
Fig. 5

2D simulation results of confinement factor and waveguide loss from dry-etched lasers, and loss-confinement ratio of both wet-etched and dry-etched lasers. The FP cavity length is assumed to be 1.5 mm for mirror loss αM calculation.

Fig. 6
Fig. 6

(a) Threshold current density of 1.5 mm long, dry-etched QC lasers with different ridge widths from 8 µm to 26 µm, in pulsed mode. The pulse width is 100 ns, and the repetition rate is 4 kHz. The inset shows the threshold current density of dry-etched and wet-etched lasers with different ridge widths at 80 K. (b) Simulated loss-confinement factor ratio and measured threshold current density, of 1.5 mm long, dry-etched QC lasers with different ridge widths.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J th =( α W + α m )/(gΓ)( α W + α m )/Γ

Metrics