Abstract

Dynamic characteristics of air plasma generated by focused double collinear femtosecond laser pulses with a time interval of 10 ns are experimentally investigated. The air plasma emission changes significantly when altering the energy ratio between the two laser pulses. Time-resolved shadowgraphic measurements reveal that a small volume of transient vacuum is formed inside the air shock wave produced by the first laser pulse, which causes the second laser pulse induced ionization zone to present as two separate sections in space. Also recorded is strong scattering of the second laser pulse by the ionized air just behind the ionization front of the first laser pulse produced shock wave. Due to the high intensity of the scattered light, coherent Thomson scattering enhanced by plasma instabilities is believed to be the main scattering mechanism in this case.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Smith and R. G. Tomlinson, “Effect of mode beating in laser-produced gas breakdown,” Appl. Phys. Lett. 11(3), 73–75 (1967).
    [CrossRef]
  2. A. J. Alcock and M. C. Richardson, “Creation of a spark by a single subnanosecond laser pulse,” Phys. Rev. Lett. 21(10), 667–670 (1968).
    [CrossRef]
  3. N. Kroll and K. M. Waston, “Theoretical study of ionization of air by intense laser pulses,” Phys. Rev. A 5(4), 1883–1905 (1972).
    [CrossRef]
  4. J. S. Hummelt and J. E. Scharer, “Excitational energy transfer enhancing ionization and spatial-temporal evolution of air breakdown with UV laser radiation,” J. Appl. Phys. 108(9), 093305 (2010).
    [CrossRef]
  5. L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92(22), 225002 (2004).
    [CrossRef] [PubMed]
  6. J. Liu, Z. Duan, Z. Zeng, X. Xie, Y. Deng, R. Li, Z. Xu, and S. L. Chin, “Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 026412 (2005).
    [CrossRef] [PubMed]
  7. Y. T. Li, T. T. Xi, Z. Q. Hao, Z. Zhang, X. Y. Peng, K. Li, Z. Jin, Z. Y. Zheng, Q. Z. Yu, X. Lu, and J. Zhang, “Oval-like hollow intensity distribution of tightly focused femtosecond laser pulses in air,” Opt. Express 15(26), 17973–17979 (2007).
    [CrossRef] [PubMed]
  8. X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express 18(25), 26007–26017 (2010).
    [CrossRef] [PubMed]
  9. K. Warner and G. M. Hieftje, “Thomson scattering from analytical plasmas,” Spectroc Acta Part B 57(2), 201–241 (2002).
    [CrossRef]
  10. J. E. Bernard, H. A. Baldis, D. M. Villeneuve, and K. Estabrook, “Time resolved Thomson scattering measurements of the electron and ion temperatures in a high intensity laser-plasma interaction,” Phys. Fluids 30(11), 3616–3623 (1987).
    [CrossRef]
  11. P. K. Diwakar and D. W. Hahn, “Study of early laser-induced plasma dynamics: Transient electron density gradients via Thomson scattering and Stark Broadening, and the implications on laser-induced breakdown spectroscopy measurements,” Spectroc Acta Part B 63(10), 1038–1046 (2008).
    [CrossRef]
  12. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectroc Acta Part B 59(12), 1907–1917 (2004).
    [CrossRef]
  13. C. M. Liebig, P. Srisungsitthisunti, A. M. Weiner, and X. Xu, “Enhanced machining of steel using femtosecond pulse pairs,” Appl. Phys., A Mater. Sci. Process. 101(3), 487–490 (2010).
    [CrossRef]
  14. K. Xu, N. Zhang, and X. Zhu, “Origin of a peculiar inerratic diffraction pattern recorded by a CCD camera,” to be submitted to Opt. Lett. (2011).
  15. X. Zhu, “Emission spectra of micro plasma generated by femtosecond laser pulses,” Proc. SPIE 4914, 58–67 (2002).
    [CrossRef]
  16. L. An, Applied Optics (Beijing Institute of Technology Press, 2000) (in Chinese).
  17. X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31(11), 1636–1638 (2006).
    [CrossRef] [PubMed]
  18. G. Callies, P. Berger, and H. Hugel, “Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation,” J. Phys. D: Appl. Phys. 28(4), 794–806 (1995).
    [CrossRef]
  19. S. Guo, Electrodynamics (High Education Press, 1997) (in Chinese).
  20. W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley Publishing Company, 1988).
  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1983).
  22. T. J. M. Boyd and J. J. Sanderson, The Physics of Plasmas (Cambridge University Press, 2003).
  23. D. H. Froula, S. H. Glenzer, N. C. Luhmann, Jr., and J. Sheffield, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques (Elsevier Inc., 2011).

2011

K. Xu, N. Zhang, and X. Zhu, “Origin of a peculiar inerratic diffraction pattern recorded by a CCD camera,” to be submitted to Opt. Lett. (2011).

2010

C. M. Liebig, P. Srisungsitthisunti, A. M. Weiner, and X. Xu, “Enhanced machining of steel using femtosecond pulse pairs,” Appl. Phys., A Mater. Sci. Process. 101(3), 487–490 (2010).
[CrossRef]

X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express 18(25), 26007–26017 (2010).
[CrossRef] [PubMed]

J. S. Hummelt and J. E. Scharer, “Excitational energy transfer enhancing ionization and spatial-temporal evolution of air breakdown with UV laser radiation,” J. Appl. Phys. 108(9), 093305 (2010).
[CrossRef]

2008

P. K. Diwakar and D. W. Hahn, “Study of early laser-induced plasma dynamics: Transient electron density gradients via Thomson scattering and Stark Broadening, and the implications on laser-induced breakdown spectroscopy measurements,” Spectroc Acta Part B 63(10), 1038–1046 (2008).
[CrossRef]

2007

2006

2005

J. Liu, Z. Duan, Z. Zeng, X. Xie, Y. Deng, R. Li, Z. Xu, and S. L. Chin, “Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 026412 (2005).
[CrossRef] [PubMed]

2004

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectroc Acta Part B 59(12), 1907–1917 (2004).
[CrossRef]

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92(22), 225002 (2004).
[CrossRef] [PubMed]

2002

K. Warner and G. M. Hieftje, “Thomson scattering from analytical plasmas,” Spectroc Acta Part B 57(2), 201–241 (2002).
[CrossRef]

X. Zhu, “Emission spectra of micro plasma generated by femtosecond laser pulses,” Proc. SPIE 4914, 58–67 (2002).
[CrossRef]

1995

G. Callies, P. Berger, and H. Hugel, “Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation,” J. Phys. D: Appl. Phys. 28(4), 794–806 (1995).
[CrossRef]

1987

J. E. Bernard, H. A. Baldis, D. M. Villeneuve, and K. Estabrook, “Time resolved Thomson scattering measurements of the electron and ion temperatures in a high intensity laser-plasma interaction,” Phys. Fluids 30(11), 3616–3623 (1987).
[CrossRef]

1972

N. Kroll and K. M. Waston, “Theoretical study of ionization of air by intense laser pulses,” Phys. Rev. A 5(4), 1883–1905 (1972).
[CrossRef]

1968

A. J. Alcock and M. C. Richardson, “Creation of a spark by a single subnanosecond laser pulse,” Phys. Rev. Lett. 21(10), 667–670 (1968).
[CrossRef]

1967

D. C. Smith and R. G. Tomlinson, “Effect of mode beating in laser-produced gas breakdown,” Appl. Phys. Lett. 11(3), 73–75 (1967).
[CrossRef]

Alcock, A. J.

A. J. Alcock and M. C. Richardson, “Creation of a spark by a single subnanosecond laser pulse,” Phys. Rev. Lett. 21(10), 667–670 (1968).
[CrossRef]

Baldis, H. A.

J. E. Bernard, H. A. Baldis, D. M. Villeneuve, and K. Estabrook, “Time resolved Thomson scattering measurements of the electron and ion temperatures in a high intensity laser-plasma interaction,” Phys. Fluids 30(11), 3616–3623 (1987).
[CrossRef]

Bergé, L.

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92(22), 225002 (2004).
[CrossRef] [PubMed]

Berger, P.

G. Callies, P. Berger, and H. Hugel, “Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation,” J. Phys. D: Appl. Phys. 28(4), 794–806 (1995).
[CrossRef]

Bernard, J. E.

J. E. Bernard, H. A. Baldis, D. M. Villeneuve, and K. Estabrook, “Time resolved Thomson scattering measurements of the electron and ion temperatures in a high intensity laser-plasma interaction,” Phys. Fluids 30(11), 3616–3623 (1987).
[CrossRef]

Bourayou, R.

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92(22), 225002 (2004).
[CrossRef] [PubMed]

Callies, G.

G. Callies, P. Berger, and H. Hugel, “Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation,” J. Phys. D: Appl. Phys. 28(4), 794–806 (1995).
[CrossRef]

Chin, S. L.

J. Liu, Z. Duan, Z. Zeng, X. Xie, Y. Deng, R. Li, Z. Xu, and S. L. Chin, “Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 026412 (2005).
[CrossRef] [PubMed]

Cristoforetti, G.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectroc Acta Part B 59(12), 1907–1917 (2004).
[CrossRef]

Deng, Y.

J. Liu, Z. Duan, Z. Zeng, X. Xie, Y. Deng, R. Li, Z. Xu, and S. L. Chin, “Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 026412 (2005).
[CrossRef] [PubMed]

Diwakar, P. K.

P. K. Diwakar and D. W. Hahn, “Study of early laser-induced plasma dynamics: Transient electron density gradients via Thomson scattering and Stark Broadening, and the implications on laser-induced breakdown spectroscopy measurements,” Spectroc Acta Part B 63(10), 1038–1046 (2008).
[CrossRef]

Duan, Z.

J. Liu, Z. Duan, Z. Zeng, X. Xie, Y. Deng, R. Li, Z. Xu, and S. L. Chin, “Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 026412 (2005).
[CrossRef] [PubMed]

Estabrook, K.

J. E. Bernard, H. A. Baldis, D. M. Villeneuve, and K. Estabrook, “Time resolved Thomson scattering measurements of the electron and ion temperatures in a high intensity laser-plasma interaction,” Phys. Fluids 30(11), 3616–3623 (1987).
[CrossRef]

Hahn, D. W.

P. K. Diwakar and D. W. Hahn, “Study of early laser-induced plasma dynamics: Transient electron density gradients via Thomson scattering and Stark Broadening, and the implications on laser-induced breakdown spectroscopy measurements,” Spectroc Acta Part B 63(10), 1038–1046 (2008).
[CrossRef]

Hao, Z. Q.

Hieftje, G. M.

K. Warner and G. M. Hieftje, “Thomson scattering from analytical plasmas,” Spectroc Acta Part B 57(2), 201–241 (2002).
[CrossRef]

Hugel, H.

G. Callies, P. Berger, and H. Hugel, “Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation,” J. Phys. D: Appl. Phys. 28(4), 794–806 (1995).
[CrossRef]

Hummelt, J. S.

J. S. Hummelt and J. E. Scharer, “Excitational energy transfer enhancing ionization and spatial-temporal evolution of air breakdown with UV laser radiation,” J. Appl. Phys. 108(9), 093305 (2010).
[CrossRef]

Jin, Z.

Kasparian, J.

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92(22), 225002 (2004).
[CrossRef] [PubMed]

Kroll, N.

N. Kroll and K. M. Waston, “Theoretical study of ionization of air by intense laser pulses,” Phys. Rev. A 5(4), 1883–1905 (1972).
[CrossRef]

Lederer, F.

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92(22), 225002 (2004).
[CrossRef] [PubMed]

Legnaioli, S.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectroc Acta Part B 59(12), 1907–1917 (2004).
[CrossRef]

Li, K.

Li, R.

J. Liu, Z. Duan, Z. Zeng, X. Xie, Y. Deng, R. Li, Z. Xu, and S. L. Chin, “Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 026412 (2005).
[CrossRef] [PubMed]

Li, Y. T.

Liebig, C. M.

C. M. Liebig, P. Srisungsitthisunti, A. M. Weiner, and X. Xu, “Enhanced machining of steel using femtosecond pulse pairs,” Appl. Phys., A Mater. Sci. Process. 101(3), 487–490 (2010).
[CrossRef]

Liu, F.

Liu, J.

J. Liu, Z. Duan, Z. Zeng, X. Xie, Y. Deng, R. Li, Z. Xu, and S. L. Chin, “Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 026412 (2005).
[CrossRef] [PubMed]

Liu, X.

Liu, X. L.

Lu, X.

Ma, J. L.

Méjean, G.

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92(22), 225002 (2004).
[CrossRef] [PubMed]

Mu, G.

Palleschi, V.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectroc Acta Part B 59(12), 1907–1917 (2004).
[CrossRef]

Peng, X. Y.

Richardson, M. C.

A. J. Alcock and M. C. Richardson, “Creation of a spark by a single subnanosecond laser pulse,” Phys. Rev. Lett. 21(10), 667–670 (1968).
[CrossRef]

Rodriguez, M.

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92(22), 225002 (2004).
[CrossRef] [PubMed]

Salmon, E.

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92(22), 225002 (2004).
[CrossRef] [PubMed]

Salvetti, A.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectroc Acta Part B 59(12), 1907–1917 (2004).
[CrossRef]

Sauerbrey, R.

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92(22), 225002 (2004).
[CrossRef] [PubMed]

Scharer, J. E.

J. S. Hummelt and J. E. Scharer, “Excitational energy transfer enhancing ionization and spatial-temporal evolution of air breakdown with UV laser radiation,” J. Appl. Phys. 108(9), 093305 (2010).
[CrossRef]

Skupin, S.

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92(22), 225002 (2004).
[CrossRef] [PubMed]

Smith, D. C.

D. C. Smith and R. G. Tomlinson, “Effect of mode beating in laser-produced gas breakdown,” Appl. Phys. Lett. 11(3), 73–75 (1967).
[CrossRef]

Srisungsitthisunti, P.

C. M. Liebig, P. Srisungsitthisunti, A. M. Weiner, and X. Xu, “Enhanced machining of steel using femtosecond pulse pairs,” Appl. Phys., A Mater. Sci. Process. 101(3), 487–490 (2010).
[CrossRef]

Tognoni, E.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectroc Acta Part B 59(12), 1907–1917 (2004).
[CrossRef]

Tomlinson, R. G.

D. C. Smith and R. G. Tomlinson, “Effect of mode beating in laser-produced gas breakdown,” Appl. Phys. Lett. 11(3), 73–75 (1967).
[CrossRef]

Villeneuve, D. M.

J. E. Bernard, H. A. Baldis, D. M. Villeneuve, and K. Estabrook, “Time resolved Thomson scattering measurements of the electron and ion temperatures in a high intensity laser-plasma interaction,” Phys. Fluids 30(11), 3616–3623 (1987).
[CrossRef]

Wang, X.

Warner, K.

K. Warner and G. M. Hieftje, “Thomson scattering from analytical plasmas,” Spectroc Acta Part B 57(2), 201–241 (2002).
[CrossRef]

Waston, K. M.

N. Kroll and K. M. Waston, “Theoretical study of ionization of air by intense laser pulses,” Phys. Rev. A 5(4), 1883–1905 (1972).
[CrossRef]

Weiner, A. M.

C. M. Liebig, P. Srisungsitthisunti, A. M. Weiner, and X. Xu, “Enhanced machining of steel using femtosecond pulse pairs,” Appl. Phys., A Mater. Sci. Process. 101(3), 487–490 (2010).
[CrossRef]

Wolf, J. P.

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92(22), 225002 (2004).
[CrossRef] [PubMed]

Wöste, L.

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92(22), 225002 (2004).
[CrossRef] [PubMed]

Xi, T. T.

Xie, X.

J. Liu, Z. Duan, Z. Zeng, X. Xie, Y. Deng, R. Li, Z. Xu, and S. L. Chin, “Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 026412 (2005).
[CrossRef] [PubMed]

Xu, K.

K. Xu, N. Zhang, and X. Zhu, “Origin of a peculiar inerratic diffraction pattern recorded by a CCD camera,” to be submitted to Opt. Lett. (2011).

Xu, X.

C. M. Liebig, P. Srisungsitthisunti, A. M. Weiner, and X. Xu, “Enhanced machining of steel using femtosecond pulse pairs,” Appl. Phys., A Mater. Sci. Process. 101(3), 487–490 (2010).
[CrossRef]

Xu, Z.

J. Liu, Z. Duan, Z. Zeng, X. Xie, Y. Deng, R. Li, Z. Xu, and S. L. Chin, “Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 026412 (2005).
[CrossRef] [PubMed]

Yu, J.

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92(22), 225002 (2004).
[CrossRef] [PubMed]

Yu, Q. Z.

Zeng, Z.

J. Liu, Z. Duan, Z. Zeng, X. Xie, Y. Deng, R. Li, Z. Xu, and S. L. Chin, “Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 026412 (2005).
[CrossRef] [PubMed]

Zhai, H.

Zhang, J.

Zhang, N.

K. Xu, N. Zhang, and X. Zhu, “Origin of a peculiar inerratic diffraction pattern recorded by a CCD camera,” to be submitted to Opt. Lett. (2011).

Zhang, Z.

Zheng, Z. Y.

Zhu, X.

K. Xu, N. Zhang, and X. Zhu, “Origin of a peculiar inerratic diffraction pattern recorded by a CCD camera,” to be submitted to Opt. Lett. (2011).

X. Zhu, “Emission spectra of micro plasma generated by femtosecond laser pulses,” Proc. SPIE 4914, 58–67 (2002).
[CrossRef]

Appl. Phys. Lett.

D. C. Smith and R. G. Tomlinson, “Effect of mode beating in laser-produced gas breakdown,” Appl. Phys. Lett. 11(3), 73–75 (1967).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

C. M. Liebig, P. Srisungsitthisunti, A. M. Weiner, and X. Xu, “Enhanced machining of steel using femtosecond pulse pairs,” Appl. Phys., A Mater. Sci. Process. 101(3), 487–490 (2010).
[CrossRef]

J. Appl. Phys.

J. S. Hummelt and J. E. Scharer, “Excitational energy transfer enhancing ionization and spatial-temporal evolution of air breakdown with UV laser radiation,” J. Appl. Phys. 108(9), 093305 (2010).
[CrossRef]

J. Phys. D: Appl. Phys.

G. Callies, P. Berger, and H. Hugel, “Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation,” J. Phys. D: Appl. Phys. 28(4), 794–806 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Fluids

J. E. Bernard, H. A. Baldis, D. M. Villeneuve, and K. Estabrook, “Time resolved Thomson scattering measurements of the electron and ion temperatures in a high intensity laser-plasma interaction,” Phys. Fluids 30(11), 3616–3623 (1987).
[CrossRef]

Phys. Rev. A

N. Kroll and K. M. Waston, “Theoretical study of ionization of air by intense laser pulses,” Phys. Rev. A 5(4), 1883–1905 (1972).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

J. Liu, Z. Duan, Z. Zeng, X. Xie, Y. Deng, R. Li, Z. Xu, and S. L. Chin, “Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 026412 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett.

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92(22), 225002 (2004).
[CrossRef] [PubMed]

A. J. Alcock and M. C. Richardson, “Creation of a spark by a single subnanosecond laser pulse,” Phys. Rev. Lett. 21(10), 667–670 (1968).
[CrossRef]

Spectroc Acta Part B

K. Warner and G. M. Hieftje, “Thomson scattering from analytical plasmas,” Spectroc Acta Part B 57(2), 201–241 (2002).
[CrossRef]

P. K. Diwakar and D. W. Hahn, “Study of early laser-induced plasma dynamics: Transient electron density gradients via Thomson scattering and Stark Broadening, and the implications on laser-induced breakdown spectroscopy measurements,” Spectroc Acta Part B 63(10), 1038–1046 (2008).
[CrossRef]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration,” Spectroc Acta Part B 59(12), 1907–1917 (2004).
[CrossRef]

Other

S. Guo, Electrodynamics (High Education Press, 1997) (in Chinese).

W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley Publishing Company, 1988).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1983).

T. J. M. Boyd and J. J. Sanderson, The Physics of Plasmas (Cambridge University Press, 2003).

D. H. Froula, S. H. Glenzer, N. C. Luhmann, Jr., and J. Sheffield, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques (Elsevier Inc., 2011).

K. Xu, N. Zhang, and X. Zhu, “Origin of a peculiar inerratic diffraction pattern recorded by a CCD camera,” to be submitted to Opt. Lett. (2011).

X. Zhu, “Emission spectra of micro plasma generated by femtosecond laser pulses,” Proc. SPIE 4914, 58–67 (2002).
[CrossRef]

L. An, Applied Optics (Beijing Institute of Technology Press, 2000) (in Chinese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram for recording the time-resolved shadowgraphs and plasma emission images of air plasma produced by femtosecond laser pulses (top view). The optical components surrounded by the dashed rectangles are employed only for certain cases explicitly indicated in the text. The distances from the CCD camera to the steering mirror B, the 4 × objective, the polarizer, and the filter stack are respectively ~1300 mm, ~912 mm, ~650 mm, and ~550 mm. PD: photodiode.

Fig. 2
Fig. 2

Plasma emission images of air ionization induced by a single (a) and double (b) femtosecond laser pulses, being recorded by a black and white CCD camera with a protection window. (Frame size: 220 μm × 164 μm.) The distance between the protection window and the CCD sensor is ~6 mm. The pulse energy of the single laser pulse used in (a) is 0.33 mJ. The pump laser pulses used in (a) and (b) are monitored by a fast photodiode and an oscilloscope, and their oscillograms are respectively shown in (c) and (d). From (d), the first and second laser pulses’ energy is estimated to be 0.13 mJ and 0.2 mJ respectively and the first-to-second pulse energy ratio is 0.65.

Fig. 3
Fig. 3

Plasma emission images of air plasma induced by the femtosecond laser pulse pair of the same parameters as those used in recording Fig. 2(b), except that the protection window of the CCD sensor is removed. In obtaining (a), no wavelength-selective filters are used after the imaging objective, which is in contrast to (b) that is recorded with a short wave pass filter of a high rejection within the spectral range from 750 nm to 875 nm. Frame size: 220 μm × 164 μm.

Fig. 4
Fig. 4

Plasma emission images (left column) and corresponding time-resolved shadowgraphs (right column) of air plasma induced by double femtosecond laser pulses with different pulse energy ratios. The total energy of the pump laser pulse pair is all set at 0.28 mJ. The plasma emission image and the corresponding shadowgraph in the same row are recorded for the same pulse energy ratio. The first-to-second pulse energy ratios are 3.2, 1, 0.2, 0.07, and 0.02 for (a, b), (c, d), (e, f), (g, h), and (i, j) respectively. For all the shadowgraphs a time delay of 13 ps exists between the pump and the probe beams. Frame size: 220 μm × 164 μm.

Fig. 5
Fig. 5

Plasma emission images of air ionization induced by double femtosecond laser pulses with horizontal (a) or vertical (b) polarization. The total energy of the pump pulse pair is 0.33 mJ and the first-to-second pulse energy ratio is 0.65. It can be noted that in Fig. 5(b), because of the strong scatter intensity, the scattered light from the left weaker scatter spot (see Fig. 3(a)) may also form an observable dot array; and due to the reflections from two surfaces of the CCD camera’s protection window, additional spots may appear, both of which are the reasons why the more complex spot pattern appears in Fig. 5(b). Frame size: 220 μm × 164 μm.

Fig. 6
Fig. 6

Polarization characteristics of the scattered light when vertically polarized double femtosecond laser pulses are employed to ionize the ambient air. The total energy of the pump pulse pair is 0.33 mJ and the first-to-second pulse energy ratio is 0.65. For each orientation of the polarizer two data points are obtained. The two data points obtained when no polarizer is used are too close to be distinguished, partially because saturation occurs for the selected pixels.

Tables (1)

Tables Icon

Table 1 Summary of the experimental conditions and results in Figs. 2 and 3

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P s dΩ / P i = 3 σ T NdΩ / (8πA)
P s dΩ=[ c R 2 8π N E s 2 + c R 2 4π N(N1) ( E j · E l ) ¯ jl ]dΩ
S T ( k )= 2π (1+ α 2 ) + 2π (1+ α 2 ) Z α 4 [1+ α 2 + α 2 ( Z T e / T i )]

Metrics