Abstract

We study singly-resonant optical parametric oscillators with chirped quasi-phasematching gratings as the gain medium, for which adiabatic optical parametric amplification has the potential to enhance conversion efficiency. This configuration, however, has a modulation instability which must be suppressed in order to yield narrowband output signal pulses. We show that high conversion efficiency can be achieved by using either a narrowband seed or a high-finesse intracavity etalon.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
    [CrossRef] [PubMed]
  2. C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010).
    [CrossRef] [PubMed]
  3. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35, 2340–2342 (2010).
    [CrossRef] [PubMed]
  4. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (2008).
    [CrossRef]
  5. G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, “Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings,” J. Opt. Soc. Am. B 18, 534–539 (2001).
    [CrossRef]
  6. L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J. Meyn, “Generation of sub-6-fs blue pulses by frequency doubling with quasi-phase-matching gratings,” Opt. Lett. 26, 614–616 (2001).
    [CrossRef]
  7. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Competing collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers,” J. Opt. Soc. Am. B 25, 1402–1413 (2008).
    [CrossRef]
  8. M. Charbonneau-Lefort, M. M. Fejer, and B. Afeyan, “Tandem chirped quasi-phase-matching grating optical parametric amplifier design for simultaneous group delay and gain control,” Opt. Lett. 30, 634–636 (2005).
    [CrossRef] [PubMed]
  9. K. A. Tillman and D. T. Reid, “Monolithic optical parametric oscillator using chirped quasi-phase matching,” Opt. Lett. 32, 1548–1550 (2007).
    [CrossRef] [PubMed]
  10. K. A. Tillman, D. T. Reid, D. Artigas, J. Hellstrm, V. Pasiskevicius, and F. Laurell, “Low-threshold femtosecond optical parametric oscillator based on chirped-pulse frequency conversion,” Opt. Lett. 28, 543–545 (2003).
    [CrossRef] [PubMed]
  11. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [CrossRef]
  12. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-w continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
    [CrossRef] [PubMed]
  13. C. R. Phillips and M. M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 27, 2687–2699 (2010).
    [CrossRef]
  14. C. R. Phillips, J. S. Pelc, and M. M. Fejer, “Continuous wave monolithic quasi-phase-matched optical parametric oscillator in periodically poled lithium niobate,” Opt. Lett. 36, 2973–2975 (2011).
    [CrossRef] [PubMed]
  15. S. T. Yang, R. C. Eckardt, and R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition,” J. Opt. Soc. Am. B 10, 1684–1695 (1993).
    [CrossRef]
  16. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum. Electron. 33, 1663–1672 (1997).
    [CrossRef]
  17. A. Henderson and R. Stafford, “Spectral broadening and stimulated Raman conversion in a continuous-wave optical parametric oscillator,” Opt. Lett. 32, 1281–1283 (2007).
    [CrossRef] [PubMed]
  18. J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, “Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals,” Opt. Express 17, 87–91 (2009).
    [CrossRef] [PubMed]
  19. R. Sowade, I. Breunig, I. Cmara Mayorga, J. Kiessling, C. Tulea, V. Dierolf, and K. Buse, “Continuous-wave optical parametric terahertz source,” Opt. Express 17, 22303–22310 (2009).
    [CrossRef]
  20. A. V. Smith, R. J. Gehr, and M. S. Bowers, “Numerical models of broad-bandwidth nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B 16, 609–619 (1999).
    [CrossRef]
  21. A. V. Smith, “Bandwidth and group-velocity effects in nanosecond optical parametric amplifiers and oscillators,” J. Opt. Soc. Am. B 22, 1953–1965 (2005).
    [CrossRef]
  22. G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16, 117–127 (1999).
    [CrossRef]
  23. G. Arisholm, “General analysis of group velocity effects in collinear optical parametric amplifiers and generators,” Opt. Express 15, 6513–6527 (2007).
    [CrossRef] [PubMed]
  24. G. Arisholm, G. Rustad, and K. Stenersen, “Importance of pump-beam group velocity for backconversion in optical parametric oscillators,” J. Opt. Soc. Am. B 18, 1882–1890 (2001).
    [CrossRef]
  25. R. White, Y. He, B. Orr, M. Kono, and K. Baldwin, “Transition from single-mode to multimode operation of an injection-seeded pulsed optical parametric oscillator,” Opt. Express 12, 5655–5660 (2004).
    [CrossRef] [PubMed]
  26. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).
  27. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  28. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011)
    [CrossRef] [PubMed]
  29. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phasematched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011)
    [CrossRef] [PubMed]
  30. M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
    [CrossRef]
  31. R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15 (6), 432 (1979)
    [CrossRef]
  32. M. D Crisp, “Adiabatic-following approximation,” Phys. Rev. A 8, 2128–2135 (1973).
    [CrossRef]
  33. G. Luther, M. Alber, J. Marsden, and J. Robbins, “Geometric analysis of optical frequency conversion and its control in quadratic nonlinear media,” J. Opt. Soc. Am. B 17, 932–941 (2000).
    [CrossRef]
  34. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers and Optics 91, 343–348 (2008).
    [CrossRef]
  35. K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs” Laser Photon. Rev. 2, No. 1–2, 11–25 (2008)
    [CrossRef]
  36. G.-L. Oppo, M. Brambilla, and L. A. Lugiato, “Formation and evolution of roll patterns in optical parametric oscillators,” Phys. Rev. A 49, 2028–2032 (1994)
    [CrossRef]
  37. J. E. Schaar, “Terahertz Sources Based On Intracavity Parametric Frequency Down-Conversion Using Quasi-Phase-Matched Gallium Arsenide,” Ph.D. thesis, Stanford University (2009)
  38. M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, “Dynamic response of a Fabry-Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999).
    [CrossRef]

2011

2010

2009

2008

M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (2008).
[CrossRef]

M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Competing collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers,” J. Opt. Soc. Am. B 25, 1402–1413 (2008).
[CrossRef]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers and Optics 91, 343–348 (2008).
[CrossRef]

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs” Laser Photon. Rev. 2, No. 1–2, 11–25 (2008)
[CrossRef]

2007

2005

2004

2003

2001

2000

1999

1997

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum. Electron. 33, 1663–1672 (1997).
[CrossRef]

1996

1993

1979

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15 (6), 432 (1979)
[CrossRef]

1973

M. D Crisp, “Adiabatic-following approximation,” Phys. Rev. A 8, 2128–2135 (1973).
[CrossRef]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Afeyan, B.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Alber, M.

Alexander, J. I.

Arie, A.

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
[CrossRef] [PubMed]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers and Optics 91, 343–348 (2008).
[CrossRef]

Arisholm, G.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Artigas, D.

Baldwin, K.

Baronio, F.

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[CrossRef]

Baumgartner, R. A.

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15 (6), 432 (1979)
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum. Electron. 33, 1663–1672 (1997).
[CrossRef]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-w continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
[CrossRef] [PubMed]

Bowers, M. S.

Brambilla, M.

G.-L. Oppo, M. Brambilla, and L. A. Lugiato, “Formation and evolution of roll patterns in optical parametric oscillators,” Phys. Rev. A 49, 2028–2032 (1994)
[CrossRef]

Breunig, I.

Buse, K.

Byer, R. L.

Charbonneau-Lefort, M.

Cmara Mayorga, I.

Conforti, M.

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[CrossRef]

Crisp, M. D

M. D Crisp, “Adiabatic-following approximation,” Phys. Rev. A 8, 2128–2135 (1973).
[CrossRef]

De Angelis, C.

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[CrossRef]

Dierolf, V.

Drobshoff, A.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Eckardt, R. C.

Fejer, M. M.

C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phasematched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011)
[CrossRef] [PubMed]

C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011)
[CrossRef] [PubMed]

C. R. Phillips, J. S. Pelc, and M. M. Fejer, “Continuous wave monolithic quasi-phase-matched optical parametric oscillator in periodically poled lithium niobate,” Opt. Lett. 36, 2973–2975 (2011).
[CrossRef] [PubMed]

C. R. Phillips and M. M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 27, 2687–2699 (2010).
[CrossRef]

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35, 2340–2342 (2010).
[CrossRef] [PubMed]

C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010).
[CrossRef] [PubMed]

M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (2008).
[CrossRef]

M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Competing collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers,” J. Opt. Soc. Am. B 25, 1402–1413 (2008).
[CrossRef]

M. Charbonneau-Lefort, M. M. Fejer, and B. Afeyan, “Tandem chirped quasi-phase-matching grating optical parametric amplifier design for simultaneous group delay and gain control,” Opt. Lett. 30, 634–636 (2005).
[CrossRef] [PubMed]

L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J. Meyn, “Generation of sub-6-fs blue pulses by frequency doubling with quasi-phase-matching gratings,” Opt. Lett. 26, 614–616 (2001).
[CrossRef]

G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, “Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings,” J. Opt. Soc. Am. B 18, 534–539 (2001).
[CrossRef]

Fermann, M. E.

Gallmann, L.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers and Optics 91, 343–348 (2008).
[CrossRef]

Galvanauskas, A.

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers and Optics 91, 343–348 (2008).
[CrossRef]

Gehr, R. J.

Gustafson, E. K.

Harter, D.

Hartl, I.

He, Y.

Heese, C.

Hellstrm, J.

Henderson, A.

Husman, M. E.

Imeshev, G.

Jiang, J.

Keller, U.

Kiessling, J.

Kono, M.

Langrock, C.

Laurell, F.

Lawrence, M. J.

Lugiato, L. A.

G.-L. Oppo, M. Brambilla, and L. A. Lugiato, “Formation and evolution of roll patterns in optical parametric oscillators,” Phys. Rev. A 49, 2028–2032 (1994)
[CrossRef]

Luther, G.

Marsden, J.

Meyn, J.

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum. Electron. 33, 1663–1672 (1997).
[CrossRef]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-w continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
[CrossRef] [PubMed]

Oppo, G.-L.

G.-L. Oppo, M. Brambilla, and L. A. Lugiato, “Formation and evolution of roll patterns in optical parametric oscillators,” Phys. Rev. A 49, 2028–2032 (1994)
[CrossRef]

Oron, D.

Orr, B.

Pasiskevicius, V.

Pelc, J. S.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Phillips, C. R.

Prabhudesai, V.

Reid, D. T.

Robbins, J.

Rustad, G.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers and Optics 91, 343–348 (2008).
[CrossRef]

Schaar, J. E.

J. E. Schaar, “Terahertz Sources Based On Intracavity Parametric Frequency Down-Conversion Using Quasi-Phase-Matched Gallium Arsenide,” Ph.D. thesis, Stanford University (2009)

Silberberg, Y.

Smith, A. V.

Sowade, R.

Stafford, R.

Steinmeyer, G.

Stenersen, K.

Suchowski, H.

Tillman, K. A.

Tulea, C.

Vodopyanov, K. L.

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs” Laser Photon. Rev. 2, No. 1–2, 11–25 (2008)
[CrossRef]

White, R.

Willke, B.

Yang, S. T.

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).

Appl. Phys. B: Lasers and Optics

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B: Lasers and Optics 91, 343–348 (2008).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15 (6), 432 (1979)
[CrossRef]

IEEE J. Quantum. Electron.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum. Electron. 33, 1663–1672 (1997).
[CrossRef]

J. Opt. Soc. Am. B

C. R. Phillips and M. M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 27, 2687–2699 (2010).
[CrossRef]

S. T. Yang, R. C. Eckardt, and R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition,” J. Opt. Soc. Am. B 10, 1684–1695 (1993).
[CrossRef]

M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (2008).
[CrossRef]

G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, “Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings,” J. Opt. Soc. Am. B 18, 534–539 (2001).
[CrossRef]

M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Competing collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers,” J. Opt. Soc. Am. B 25, 1402–1413 (2008).
[CrossRef]

A. V. Smith, R. J. Gehr, and M. S. Bowers, “Numerical models of broad-bandwidth nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B 16, 609–619 (1999).
[CrossRef]

A. V. Smith, “Bandwidth and group-velocity effects in nanosecond optical parametric amplifiers and oscillators,” J. Opt. Soc. Am. B 22, 1953–1965 (2005).
[CrossRef]

G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16, 117–127 (1999).
[CrossRef]

G. Arisholm, G. Rustad, and K. Stenersen, “Importance of pump-beam group velocity for backconversion in optical parametric oscillators,” J. Opt. Soc. Am. B 18, 1882–1890 (2001).
[CrossRef]

G. Luther, M. Alber, J. Marsden, and J. Robbins, “Geometric analysis of optical frequency conversion and its control in quadratic nonlinear media,” J. Opt. Soc. Am. B 17, 932–941 (2000).
[CrossRef]

M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, “Dynamic response of a Fabry-Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999).
[CrossRef]

Laser Photon. Rev.

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs” Laser Photon. Rev. 2, No. 1–2, 11–25 (2008)
[CrossRef]

Opt. Express

Opt. Lett.

A. Henderson and R. Stafford, “Spectral broadening and stimulated Raman conversion in a continuous-wave optical parametric oscillator,” Opt. Lett. 32, 1281–1283 (2007).
[CrossRef] [PubMed]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-w continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
[CrossRef] [PubMed]

C. R. Phillips, J. S. Pelc, and M. M. Fejer, “Continuous wave monolithic quasi-phase-matched optical parametric oscillator in periodically poled lithium niobate,” Opt. Lett. 36, 2973–2975 (2011).
[CrossRef] [PubMed]

C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010).
[CrossRef] [PubMed]

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35, 2340–2342 (2010).
[CrossRef] [PubMed]

L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J. Meyn, “Generation of sub-6-fs blue pulses by frequency doubling with quasi-phase-matching gratings,” Opt. Lett. 26, 614–616 (2001).
[CrossRef]

M. Charbonneau-Lefort, M. M. Fejer, and B. Afeyan, “Tandem chirped quasi-phase-matching grating optical parametric amplifier design for simultaneous group delay and gain control,” Opt. Lett. 30, 634–636 (2005).
[CrossRef] [PubMed]

K. A. Tillman and D. T. Reid, “Monolithic optical parametric oscillator using chirped quasi-phase matching,” Opt. Lett. 32, 1548–1550 (2007).
[CrossRef] [PubMed]

K. A. Tillman, D. T. Reid, D. Artigas, J. Hellstrm, V. Pasiskevicius, and F. Laurell, “Low-threshold femtosecond optical parametric oscillator based on chirped-pulse frequency conversion,” Opt. Lett. 28, 543–545 (2003).
[CrossRef] [PubMed]

C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phasematched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011)
[CrossRef] [PubMed]

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Phys. Rev. A

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
[CrossRef]

M. D Crisp, “Adiabatic-following approximation,” Phys. Rev. A 8, 2128–2135 (1973).
[CrossRef]

G.-L. Oppo, M. Brambilla, and L. A. Lugiato, “Formation and evolution of roll patterns in optical parametric oscillators,” Phys. Rev. A 49, 2028–2032 (1994)
[CrossRef]

Other

J. E. Schaar, “Terahertz Sources Based On Intracavity Parametric Frequency Down-Conversion Using Quasi-Phase-Matched Gallium Arsenide,” Ph.D. thesis, Stanford University (2009)

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).

G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Conversion efficiency (1 – ηp) as a function of pump ratio N, for the QPM grating profile shown by the solid blue and red lines in (b); the simulation parameters are given in the text. The dashed straight line in (b) shows just the linear part of the Δk profile (slope Δk′) as a guide to the eye. The analytical result from Eqs. (7) and (8), labeled “theory” in (a) is in good agreement with the numerical solution of Eq. (1), labeled “simulation” in (a).

Fig. 2
Fig. 2

Steady-state intensity profiles Ij(z) normalized to input pump intensity I0 for the OPO simulated in Fig. 1, for N = 6.

Fig. 3
Fig. 3

(a) Dependence of sideband gain G on pump ratio N for the OPO simulated in Fig. 1. (b) Propagation of the signal, idler and pump sidebands for the highest-gain signal eigenmode at Ω/(2π) = 1 THz and N = 6. The sidebands are normalized such that | a s | 2 + | a s + | 2 = 1 at z = 0.

Fig. 4
Fig. 4

Output pulses for a chirped QPM OPO with CW-signal-seeding. Simulation parameters are given in the text. (a) Signal and pump intensities I(t) in the time domain, normalized to the peak input pump intensity I0. The inset shows the normalized output pump fluence W(t), defined in Eq. (17). (b) Signal spectrum, with frequency normalized to the bandwidth of the Gaussian pump pulse (1/e2 duration τp) and centered at ωc, which is defined as the centroid of the signal spectrum.

Fig. 5
Fig. 5

Output pulses for a chirped QPM OPO with the same parameters as those used in Fig. 4, but with white-noise seeding. (a) Signal and pump intensities in the time domain, Ij(t) (j = s, p), normalized to the peak intensity of the input pump pulse, I0. The inset shows W(t). (b) Signal spectrum, with frequency normalized to the OPO acceptance bandwidth ΔfBW (≈ 3.35 THz in this case) and centered at ωs, the signal frequency phasematched at the center of the QPM grating.

Fig. 6
Fig. 6

Output pulses for a chirped QPM OPO with the same parameters as those used in Fig. 5, but with an intracavity etalon (free spectral range 4.15 THz). (a) Signal and pump intensities in the time domain, Ij(t) (j = s, p), normalized to I0. The inset shows W(t). (b) Signal spectrum, with frequency normalized to the bandwidth of the etalon peaks, Δfet = fsret(1 – Ret)/(2π) for etalon reflectance Ret and free spectral range fsret. Δfet ≈ 120 GHz in this case. (c) Output pump intensity Ip(t)/I0 for the case shown in Fig. 6(a), plotted over a limited temporal range to show pulsing behavior; the pulses correspond to regions in which adiabatic conversion does not occur. The time axis is normalized to the signal round-trip time: the pulse pattern is slightly modified after each signal round trip through the cavity.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

L ^ i A ˜ i = i γ opt ( ω ) 𝒡 [ A s * A p ] = i γ THz ( ω ) 𝒡 [ ( A T + A T * ) A i ] L ^ s A ˜ s = i γ opt ( ω ) 𝒡 [ A i * A p ] i γ THz ( ω ) 𝒡 [ ( A T + A T * ) A s ] L ^ p A ˜ p = i γ opt ( ω ) 𝒡 [ A i A s ] i γ THz ( ω ) 𝒡 [ ( A T + A T * ) A p ] L ^ T A ˜ T = i γ THz ( ω ) 𝒡 [ | A i | 2 + | A s | 2 + | A p | 2 ]
E = 1 2 [ ( A i e i ( ω i t k i z ) + A s e i ( ω s t k s z ) + A p e i ( ω p t k p z ) ) e i 0 z Δ k ( z ) d z + A T e ( i 0 z K g ( z ) d z ) ] + c.c. ,
Δ k ( z ) = Δ k 0 K g ( z ) .
L ^ j = z + α ( ω ) 2 + i [ k ( ω ) k x 2 + k y 2 2 k ( ω ) k j ω ω j v ref ] i Δ k ( z )
L ^ T = z α ( ω ) 2 i [ k ( ω ) k x 2 + k y 2 2 k ( ω ) + ω v ref K g ( z ) ]
G s exp ( 2 π Λ p ) ,
η p exp ( 2 π Λ s ) ,
1 exp ( 2 π Λ s ) 2 π Λ s = 1 N
K g ( z ) = k p k s k i Δ k ( z L / 2 ) K a 2 [ tanh ( z z a 1 L a 1 ) tanh ( z a 2 z L a 2 ) ] ,
Δ k is , eff ( z , ± Ω ) Δ k ( z ) ϕ p z ± ( n g , i n g , s c ) Ω ,
Δ k s p , eff ( z , ± Ω ) Δ k ( z ) + ϕ i z ± ( n g , p n g , s c ) Ω .
Δ k i p , eff ( z , ± Ω ) Δ k ( z ) + ϕ s z ± ( n g , p n g , i c ) Ω .
ln ( I ( t ) I 0 ) N r t t 0 t 2 π Λ p , p k f p ( t ) ln ( 1 / R s ) τ p d t ,
N s ln ( 1 / R s ) N r t .
N p k 2 π Λ p , p k ln ( 1 / R ) 1.
f fsr t r t | Δ k L 2 2 π n g ( ω s δ n g | .
W ( t ) = t I p ( L , t ) d t I p ( 0 , t ) d t .
A j ( r , t ) = A j ( 0 ) ( z ) + a j ( r , t )
v ˜ ( k , Ω ) T [ a ˜ i ( ) * a ˜ i ( + ) a ˜ s ( ) * a ˜ s ( + ) a ˜ p ( ) * a ˜ p ( + ) a ˜ T ( + ) ] ,
d v ˜ d z = M ( z ) v ˜
M ( z ) = i [ K i , 0 0 κ i , o A p ( 0 ) * κ i , o A s ( 0 ) 0 κ i , T A i ( 0 ) * 0 K i , + κ i , o + A p ( 0 ) 0 0 κ i , o + A s ( 0 ) * κ i , T + A i ( 0 ) 0 κ s , o A p ( 0 ) * K s , 0 κ s , o A i ( 0 ) 0 κ s , T A s ( 0 ) * κ s , o + A p ( 0 ) 0 0 K s , + 0 κ s , o + A i ( 0 ) * κ s , T A s ( 0 ) κ p , o A s ( 0 ) * 0 κ p , o + A i ( 0 ) 0 K p , 0 κ p , T A p ( 0 ) * 0 κ p , o + A s ( 0 ) 0 κ p , o + A i ( 0 ) 0 K p , + κ p , T + A p ( 0 ) κ T A i ( 0 ) κ T A i ( 0 ) * κ T A s ( 0 ) κ T A s ( 0 ) * κ T A p ( 0 ) κ T A p ( 0 ) * K T , + ]
Φ r t ( Ω ) = R s [ h ˜ * ( Ω ) e i ϕ s 0 0 h ˜ ( Ω ) e i ϕ s ] [ Φ 3 , 3 ( L , 0 ) Φ 3 , 4 ( L , 0 ) Φ 4 , 3 ( L , 0 ) Φ 4 , 4 ( L , 0 ) ] ,

Metrics