Abstract

We propose a novel photonic structure, based on the photonic crystal (PC) effect, which simulations show results in an improved fluorescence efficiency from embedded phosphor. To be specific, the phosphor pumping efficiency can be significantly improved by tuning the pump photon energy to a photonic band-edge (PBE) of the PC phosphor. We have confirmed this theoretically by calculating optical properties of one-dimensional PC phosphor structures using the transfer-matrix method and plane-wave expansion method. For a particular model structure based on a quantum dot phosphor, the fluorescence enhancement factor was estimated to be as high as 6.9 for a monochromatic pump source and 2.2 for a broad bandwidth (20 nm) pump source.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
    [CrossRef]
  2. C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 Years of Research and Application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
    [CrossRef]
  3. W.-J. Yang, L. Luo, T.-M. Chen, and N.-S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater. 17(15), 3883–3888 (2005).
    [CrossRef]
  4. R.-J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors,” Appl. Phys. Lett. 88(10), 101104 (2006).
    [CrossRef]
  5. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  6. H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256(5053), 66–70 (1992).
    [CrossRef] [PubMed]
  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [CrossRef] [PubMed]
  8. C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813–2815 (2000).
    [CrossRef]
  9. Y.-G. Roh, S. Yoon, H. Jeon, S.-H. Han, and Q.-H. Park, “Experimental verification of cross talk reduction in photonic crystal waveguide crossings,” Appl. Phys. Lett. 85(16), 3351–3353 (2004).
    [CrossRef]
  10. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008), Chap. 4.
  11. P. Yeh, Optical Waves in Layered Media (Wiley, 1988), Chap. 6.
  12. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009), Chap. 9.
  13. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
    [CrossRef]
  14. Y. Liu, C. Jiang, Y. Lin, and W. Xu, “Slow-light enhancement of stimulated emission of atomic systems in photonic crystals,” J. Opt. Soc. Am. B 27(3), 442–446 (2010).
    [CrossRef]
  15. C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals,” Opt. Lett. 36(20), 3990–3992 (2011).
    [CrossRef] [PubMed]
  16. A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc. 112(4), 1327–1332 (1990).
    [CrossRef]
  17. D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105(37), 8861–8871 (2001).
    [CrossRef]
  18. K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of high-bright and pure-white LED lamps,” J. Light Visual Environ. 22(1), 2–5 (1998).
    [CrossRef]

2011

2010

2009

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[CrossRef]

2006

R.-J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors,” Appl. Phys. Lett. 88(10), 101104 (2006).
[CrossRef]

2005

W.-J. Yang, L. Luo, T.-M. Chen, and N.-S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater. 17(15), 3883–3888 (2005).
[CrossRef]

2004

Y.-G. Roh, S. Yoon, H. Jeon, S.-H. Han, and Q.-H. Park, “Experimental verification of cross talk reduction in photonic crystal waveguide crossings,” Appl. Phys. Lett. 85(16), 3351–3353 (2004).
[CrossRef]

2003

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 Years of Research and Application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[CrossRef]

2001

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105(37), 8861–8871 (2001).
[CrossRef]

2000

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813–2815 (2000).
[CrossRef]

1999

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

1998

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of high-bright and pure-white LED lamps,” J. Light Visual Environ. 22(1), 2–5 (1998).
[CrossRef]

1992

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256(5053), 66–70 (1992).
[CrossRef] [PubMed]

1990

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc. 112(4), 1327–1332 (1990).
[CrossRef]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Alivisatos, A. P.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105(37), 8861–8871 (2001).
[CrossRef]

Bando, K.

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of high-bright and pure-white LED lamps,” J. Light Visual Environ. 22(1), 2–5 (1998).
[CrossRef]

Bawendi, M. G.

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc. 112(4), 1327–1332 (1990).
[CrossRef]

Benisty, H.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813–2815 (2000).
[CrossRef]

Biswas, R.

Brus, L. E.

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc. 112(4), 1327–1332 (1990).
[CrossRef]

Carroll, P. J.

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc. 112(4), 1327–1332 (1990).
[CrossRef]

Chen, T.-M.

W.-J. Yang, L. Luo, T.-M. Chen, and N.-S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater. 17(15), 3883–3888 (2005).
[CrossRef]

Conibeer, G. J.

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

De La Rue, R. M.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813–2815 (2000).
[CrossRef]

DenBaars, S. P.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[CrossRef]

El-Kady, I.

Feldmann, C.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 Years of Research and Application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[CrossRef]

Fleming, J. G.

Gerion, D.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105(37), 8861–8871 (2001).
[CrossRef]

Han, S.-H.

Y.-G. Roh, S. Yoon, H. Jeon, S.-H. Han, and Q.-H. Park, “Experimental verification of cross talk reduction in photonic crystal waveguide crossings,” Appl. Phys. Lett. 85(16), 3351–3353 (2004).
[CrossRef]

Hirosaki, N.

R.-J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors,” Appl. Phys. Lett. 88(10), 101104 (2006).
[CrossRef]

Ho, K. M.

Houdré, R.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813–2815 (2000).
[CrossRef]

Hull, R.

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc. 112(4), 1327–1332 (1990).
[CrossRef]

Jeon, H.

Y.-G. Roh, S. Yoon, H. Jeon, S.-H. Han, and Q.-H. Park, “Experimental verification of cross talk reduction in photonic crystal waveguide crossings,” Appl. Phys. Lett. 85(16), 3351–3353 (2004).
[CrossRef]

Jiang, C.

Johnson, C. M.

Jüstel, T.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 Years of Research and Application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Kortan, A. R.

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc. 112(4), 1327–1332 (1990).
[CrossRef]

Krauss, T. F.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813–2815 (2000).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Li, Z. Y.

Lin, S. Y.

Lin, Y.

Liu, Y.

Luo, L.

W.-J. Yang, L. Luo, T.-M. Chen, and N.-S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater. 17(15), 3883–3888 (2005).
[CrossRef]

Mitomo, M.

R.-J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors,” Appl. Phys. Lett. 88(10), 101104 (2006).
[CrossRef]

Nakamura, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[CrossRef]

Noguchi, Y.

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of high-bright and pure-white LED lamps,” J. Light Visual Environ. 22(1), 2–5 (1998).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Oesterle, U.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813–2815 (2000).
[CrossRef]

Olivier, S.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813–2815 (2000).
[CrossRef]

Opila, R. L.

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc. 112(4), 1327–1332 (1990).
[CrossRef]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Parak, W. J.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105(37), 8861–8871 (2001).
[CrossRef]

Park, Q.-H.

Y.-G. Roh, S. Yoon, H. Jeon, S.-H. Han, and Q.-H. Park, “Experimental verification of cross talk reduction in photonic crystal waveguide crossings,” Appl. Phys. Lett. 85(16), 3351–3353 (2004).
[CrossRef]

Pimputkar, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[CrossRef]

Pinaud, F.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105(37), 8861–8871 (2001).
[CrossRef]

Rattier, M.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813–2815 (2000).
[CrossRef]

Reece, P. J.

Roh, Y.-G.

Y.-G. Roh, S. Yoon, H. Jeon, S.-H. Han, and Q.-H. Park, “Experimental verification of cross talk reduction in photonic crystal waveguide crossings,” Appl. Phys. Lett. 85(16), 3351–3353 (2004).
[CrossRef]

Ronda, C. R.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 Years of Research and Application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[CrossRef]

Sakano, K.

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of high-bright and pure-white LED lamps,” J. Light Visual Environ. 22(1), 2–5 (1998).
[CrossRef]

Sakuma, K.

R.-J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors,” Appl. Phys. Lett. 88(10), 101104 (2006).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Schmidt, P. J.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 Years of Research and Application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[CrossRef]

Shimizu, Y.

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of high-bright and pure-white LED lamps,” J. Light Visual Environ. 22(1), 2–5 (1998).
[CrossRef]

Smith, C. J. M.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813–2815 (2000).
[CrossRef]

Speck, J. S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[CrossRef]

Steigerwald, M. L.

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc. 112(4), 1327–1332 (1990).
[CrossRef]

Takahashi, K.

R.-J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors,” Appl. Phys. Lett. 88(10), 101104 (2006).
[CrossRef]

Wang, N.-S.

W.-J. Yang, L. Luo, T.-M. Chen, and N.-S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater. 17(15), 3883–3888 (2005).
[CrossRef]

Weisbuch, C.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813–2815 (2000).
[CrossRef]

Weiss, S.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105(37), 8861–8871 (2001).
[CrossRef]

Williams, S. C.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105(37), 8861–8871 (2001).
[CrossRef]

Xie, R.-J.

R.-J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors,” Appl. Phys. Lett. 88(10), 101104 (2006).
[CrossRef]

Xu, W.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yang, W.-J.

W.-J. Yang, L. Luo, T.-M. Chen, and N.-S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater. 17(15), 3883–3888 (2005).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Yokoyama, H.

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256(5053), 66–70 (1992).
[CrossRef] [PubMed]

Yoon, S.

Y.-G. Roh, S. Yoon, H. Jeon, S.-H. Han, and Q.-H. Park, “Experimental verification of cross talk reduction in photonic crystal waveguide crossings,” Appl. Phys. Lett. 85(16), 3351–3353 (2004).
[CrossRef]

Zanchet, D.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105(37), 8861–8871 (2001).
[CrossRef]

Adv. Funct. Mater.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 Years of Research and Application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[CrossRef]

Appl. Phys. Lett.

R.-J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors,” Appl. Phys. Lett. 88(10), 101104 (2006).
[CrossRef]

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813–2815 (2000).
[CrossRef]

Y.-G. Roh, S. Yoon, H. Jeon, S.-H. Han, and Q.-H. Park, “Experimental verification of cross talk reduction in photonic crystal waveguide crossings,” Appl. Phys. Lett. 85(16), 3351–3353 (2004).
[CrossRef]

Chem. Mater.

W.-J. Yang, L. Luo, T.-M. Chen, and N.-S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater. 17(15), 3883–3888 (2005).
[CrossRef]

J. Am. Chem. Soc.

A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc. 112(4), 1327–1332 (1990).
[CrossRef]

J. Light Visual Environ.

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of high-bright and pure-white LED lamps,” J. Light Visual Environ. 22(1), 2–5 (1998).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105(37), 8861–8871 (2001).
[CrossRef]

Nat. Photonics

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Science

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256(5053), 66–70 (1992).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Other

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008), Chap. 4.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988), Chap. 6.

S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Schematic of the 1D PC phosphor structure consisting of N pairs of alternating layers. The refractive indices are nL = 1.45 and nH = 1.76. The thickness of each individual layer is d = λ0/4n, where λ0 is the center wavelength of PBG. The circular dots represent fluorescent agents, which are assumed to be selectively dispersed in the layers with high refractive index only.

Fig. 2
Fig. 2

(Color online) Photonic properties of the 1D PC. (a) Photonic band structure calculated by the PWE method. (b) Reflectance (blue) and transmittance (red line) spectra for N = 10 and 30.

Fig. 3
Fig. 3

(Color online) (a) Reflectance spectrum of the N = 30 1D PC structure. λ0, λ1, λ2, and λ3 indicate some of the critical and representative wavelengths in the reflectance spectrum. (b) Electric field intensity profiles when the light of each representative wavelength (λ0, λ1, λ2, and λ3) is incident from the left.

Fig. 4
Fig. 4

(Color online) Phosphor characteristics of the 1D PC phosphor and bulk phosphor when pumped by a monochromatic light source. (a) Absorbance spectra of the 1D PC phosphor with N = 30 pairs of layers (red solid line) and of the bulk phosphor with equivalent phosphor thickness (black solid line), as a function of monochromatic pump wavelength. (b) Fluorescence enhancement factor of the 1D PC phosphor as a function of the number of pairs of layers.

Fig. 5
Fig. 5

(Color online) Phosphor characteristics of the 1D PC phosphor and bulk phosphor when pumped by a broad bandwidth light source. (a) Absorbance spectra of the 1D PC phosphor with N = 30 (red solid line) and of the bulk phosphor (black solid line) as a function of the peak wavelength of the broad bandwidth light source. (b) Fluorescence enhancement factor of the 1D PC phosphor as a function of the number of pairs of layers in the PC phosphor.

Fig. 6
Fig. 6

(Color online) 1D PC phosphor properties at a high QD concentration. (a) Reflectance spectrum of the 1D PC phosphor (N = 30) with QD concentration of 0.01 M. (b) QD concentration (or, equivalently, the absorption coefficient) dependence of the fluorescence enhancement factor.

Metrics