Abstract

Coherent optical OFDM (CO-OFDM) combined with orthogonal band multiplexing provides a scalable and flexible solution for achieving ultra high-speed rate. Among many CO-OFDM implementations, digital Fourier transform spread (DFT-S) CO-OFDM is proposed to mitigate fiber nonlinearity in long-haul transmission. In this paper, we first illustrate the principle of DFT-S OFDM. We then experimentally evaluate the performance of coherent optical DFT-S OFDM in a band-multiplexed transmission system. Compared with conventional clipping methods, DFT-S OFDM can reduce the OFDM peak-to-average power ratio (PAPR) value without suffering from the interference of the neighboring bands. With the benefit of much reduced PAPR, we successfully demonstrate 1.45 Tb/s DFT-S OFDM over 480 km SSMF transmission.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
    [CrossRef]
  2. A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems, ” Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP39.
  3. I. B. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express 14(9), 3767–3775 (2006).
    [CrossRef] [PubMed]
  4. S. L. Jansen, I. Morita, T. C. Schenk, and H. Tanaka, “Long-haul transmission of16×52.5 Gbits/s polarization-division- multiplexed OFDM enabled by MIMO processing (Invited),” J. Opt. Netw. 7(2), 173–182 (2008).
    [CrossRef]
  5. Q. Yang, Y. Tang, Y. Ma, and W. Shieh, “Experimental demonstration and numerical simulation of 107-Gb/s high spectral efficiency coherent optical OFDM,” J. Lightwave Technol. 27(3), 168–176 (2009).
    [CrossRef]
  6. R. Dischler and F. Buchali, “Transmission of 1.2 Tb/s continuous waveband PDM-OFDM-FDM Signal with spectral efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPC2.
  7. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  8. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” in 35th European Conference on Optical Communication, 2009 paper PD2.6.
  9. J. Yu, Z. Dong, and N. Chi, “Transmission and coherent detection of 11.2 Tb/s (112x100gb/s) single source optical OFDM superchannel,” in Optical Fiber Communication Conference and Exposition 2011, paper PDPA6.
  10. W. Shieh, Q. Yang, and Y. Ma, “107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing,” Opt. Express 16(9), 6378–6386 (2008).
    [CrossRef] [PubMed]
  11. Q. Yang, W. Shieh, and Y. Ma, “Guard-band influence on orthogonal-band-multiplexed coherent optical OFDM,” Opt. Lett. 33(19), 2239–2241 (2008).
    [CrossRef] [PubMed]
  12. R. Gross and D. Veeneman, “SNR and spectral properties for a clipped DMT ADSL signal,” in Proc. of VTC’94, June 1994, 843–847.
  13. X. Li, L. J. Cimini, and Jr., “Effect of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett. 2(5), 131–133 (1998).
    [CrossRef]
  14. D. Chanda, A. Sesay, and B. Davies, “Performance of clipped OFDM signal in fiber,” Electrical and Computer Engineering, 2004. Canadian Conference vol.4, 2401- 2404 May 2004.
  15. S. McCanne, “Scalable multimedia communication using IP multicast and lightweight solutions for the 3G long-term evolution,” IEEE Commun. Mag. 44(3), 38–45 (2006).
  16. Y. Tang, W. Shieh, and B. S. Krongold, “Fiber nonlinearity mitigation in 428-Gb/s multiband coherent optical OFDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA6.
  17. Q. Yang, Z. He, Z. Yang, S. Yu, and X. Yi, A. A.l Amin, and W. Shieh, “Coherent optical DFT-spread OFDM in band-multiplexed transmissions,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.A.6

2009 (2)

2008 (3)

2006 (3)

S. McCanne, “Scalable multimedia communication using IP multicast and lightweight solutions for the 3G long-term evolution,” IEEE Commun. Mag. 44(3), 38–45 (2006).

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

I. B. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express 14(9), 3767–3775 (2006).
[CrossRef] [PubMed]

1998 (1)

X. Li, L. J. Cimini, and Jr., “Effect of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett. 2(5), 131–133 (1998).
[CrossRef]

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

Chen, S.

Cimini, L. J.

X. Li, L. J. Cimini, and Jr., “Effect of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett. 2(5), 131–133 (1998).
[CrossRef]

Djordjevic, I. B.

Jansen, S. L.

Jr,

X. Li, L. J. Cimini, and Jr., “Effect of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett. 2(5), 131–133 (1998).
[CrossRef]

Li, X.

X. Li, L. J. Cimini, and Jr., “Effect of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett. 2(5), 131–133 (1998).
[CrossRef]

Ma, Y.

McCanne, S.

S. McCanne, “Scalable multimedia communication using IP multicast and lightweight solutions for the 3G long-term evolution,” IEEE Commun. Mag. 44(3), 38–45 (2006).

Morita, I.

Schenk, T. C.

Shieh, W.

Tanaka, H.

Tang, Y.

Vasic, B.

Yang, Q.

Electron. Lett. (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

IEEE Commun. Lett. (1)

X. Li, L. J. Cimini, and Jr., “Effect of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett. 2(5), 131–133 (1998).
[CrossRef]

IEEE Commun. Mag. (1)

S. McCanne, “Scalable multimedia communication using IP multicast and lightweight solutions for the 3G long-term evolution,” IEEE Commun. Mag. 44(3), 38–45 (2006).

J. Lightwave Technol. (1)

J. Opt. Netw. (1)

Opt. Express (3)

Opt. Lett. (1)

Other (8)

R. Gross and D. Veeneman, “SNR and spectral properties for a clipped DMT ADSL signal,” in Proc. of VTC’94, June 1994, 843–847.

D. Chanda, A. Sesay, and B. Davies, “Performance of clipped OFDM signal in fiber,” Electrical and Computer Engineering, 2004. Canadian Conference vol.4, 2401- 2404 May 2004.

Y. Tang, W. Shieh, and B. S. Krongold, “Fiber nonlinearity mitigation in 428-Gb/s multiband coherent optical OFDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA6.

Q. Yang, Z. He, Z. Yang, S. Yu, and X. Yi, A. A.l Amin, and W. Shieh, “Coherent optical DFT-spread OFDM in band-multiplexed transmissions,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.A.6

S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” in 35th European Conference on Optical Communication, 2009 paper PD2.6.

J. Yu, Z. Dong, and N. Chi, “Transmission and coherent detection of 11.2 Tb/s (112x100gb/s) single source optical OFDM superchannel,” in Optical Fiber Communication Conference and Exposition 2011, paper PDPA6.

R. Dischler and F. Buchali, “Transmission of 1.2 Tb/s continuous waveband PDM-OFDM-FDM Signal with spectral efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPC2.

A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems, ” Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP39.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Concept diagram for DFT-S OFDM signal processing at the (a) transmitter and (b) receiver. S/P: serial-to-parallel, P/S: parallel-to-serial

Fig. 2
Fig. 2

Experimental setup for 150 Gb/s DFT-S CO-OFDM system.

Fig. 3
Fig. 3

RF spectra after the single-band detection. (a) DFT-S OFDM, (b) Normal OFDM without clipping, and (c) normal OFDM with clipping ratio (CR) = 1.5.

Fig. 4
Fig. 4

BER performance as a function of OSNR in (a) single-band, and (b) multi-band systems. Constellation in (b) is measured in DFT-S OFDM at OSNR = 18.36 dB.

Fig. 5
Fig. 5

(a) Experimental setup for 1.45 Tb/s DFT-S CO-OFDM system. PBS/C: Polarization beam splitter/combiner; ECL: External cavity laser; WSS: Wavelength selective switch; (b) 29 optical tones after two cascaded phase modulators; (c) 87 optical tones after three cascaded optical modulators

Fig. 6
Fig. 6

(a) BER-OSNR performance for 1.45 Tb/s DFT-S CO-OFDM at back-to-back; (b) The BER performance of the sub-bands after 480 km transmission.

Tables (1)

Tables Icon

Table 1 Required OSNRs at BER of 1x10−3 for DFT-S and conventional OFDM with various clipping ratios

Metrics