Abstract

Based on reconstruction-equivalent-chirp (REC) technique, a novel solution for fabricating low-cost long fiber Bragg gratings (FBGs) with desired properties is proposed and initially studied. A proof-of-concept experiment is demonstrated with two conventional uniform phase masks and a submicron-precision translation stage, successfully. It is shown that the original phase shift (OPS) caused by phase mismatch of the two phase masks can be compensated by the equivalent phase shift (EPS) at the ±1st channels of sampled FBGs, separately. Furthermore, as an example, a π phase-shifted FBG of about 90mm is fabricated by using these two 50mm-long uniform phase masks based on the presented method.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett. 17(10), 2044–2046 (2005).
    [CrossRef]
  2. P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(2), 154–156 (2001).
    [CrossRef]
  3. M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(21), 1559–1561 (2010).
    [CrossRef]
  4. J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun. 284(13), 3251–3257 (2011).
    [CrossRef]
  5. F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30(17), 2203–2205 (2005).
    [CrossRef] [PubMed]
  6. X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. Ng, and C. Zhao, “A largely tunable CFBG-based dispersion compensator with fixed center wavelength,” Opt. Express 11(22), 2970–2974 (2003).
    [CrossRef] [PubMed]
  7. Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29(12), 1333–1335 (2004).
    [CrossRef] [PubMed]
  8. Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
    [CrossRef]
  9. X. Chen, J. Yao, F. Zeng, and Z. Deng“Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(7), 1390–1392 (2005).
    [CrossRef]
  10. Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber Bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photon. Technol. Lett. 18(8), 941–943 (2006).
    [CrossRef]
  11. X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
    [CrossRef]
  12. Y. Cheng, J. Li, Z. Yin, T. Pu, L. Lu, J. Zheng, and X. Chen, “OCDMA en/decoders employing multiple π equivalent phase shifts,” IEEE Photon. Technol. Lett. 21(24), 1795–1797 (2009).
    [CrossRef]
  13. L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16×10 Gb/s WDM transmission over 840-km SMF using eleven broad-band chirped fiber gratings,” IEEE Photon. Technol. Lett. 11(4), 484–486 (1999).
    [CrossRef]
  14. P. C. Chou, H. A. Haus, and J. F. Brennan, “Reconfigurable time-domain spectral shaping of an optical pulse stretched by a fiber Bragg grating,” Opt. Lett. 25(8), 524–526 (2000).
    [CrossRef] [PubMed]
  15. K. Hotate and K. Kajiwara, “Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function,” Opt. Express 16(11), 7881–7887 (2008).
    [CrossRef] [PubMed]
  16. H. Lee and G. P. Agrawal, “Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings,” Opt. Express 11(25), 3467–3472 (2003).
    [CrossRef] [PubMed]
  17. A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
    [CrossRef]
  18. R. Kashyap, H. G. Froehlich, A. Swanton, and D. J. Armes, “1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation,” Electron. Lett. 32(19), 1807–1809 (1996).
    [CrossRef]

2011

J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun. 284(13), 3251–3257 (2011).
[CrossRef]

2010

M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(21), 1559–1561 (2010).
[CrossRef]

2009

Y. Cheng, J. Li, Z. Yin, T. Pu, L. Lu, J. Zheng, and X. Chen, “OCDMA en/decoders employing multiple π equivalent phase shifts,” IEEE Photon. Technol. Lett. 21(24), 1795–1797 (2009).
[CrossRef]

2008

2006

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber Bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photon. Technol. Lett. 18(8), 941–943 (2006).
[CrossRef]

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[CrossRef]

2005

X. Chen, J. Yao, F. Zeng, and Z. Deng“Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(7), 1390–1392 (2005).
[CrossRef]

F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30(17), 2203–2205 (2005).
[CrossRef] [PubMed]

Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett. 17(10), 2044–2046 (2005).
[CrossRef]

2004

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29(12), 1333–1335 (2004).
[CrossRef] [PubMed]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
[CrossRef]

2003

2001

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(2), 154–156 (2001).
[CrossRef]

2000

1999

L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16×10 Gb/s WDM transmission over 840-km SMF using eleven broad-band chirped fiber gratings,” IEEE Photon. Technol. Lett. 11(4), 484–486 (1999).
[CrossRef]

1997

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[CrossRef]

1996

R. Kashyap, H. G. Froehlich, A. Swanton, and D. J. Armes, “1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation,” Electron. Lett. 32(19), 1807–1809 (1996).
[CrossRef]

Agrawal, G. P.

Armes, D. J.

R. Kashyap, H. G. Froehlich, A. Swanton, and D. J. Armes, “1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation,” Electron. Lett. 32(19), 1807–1809 (1996).
[CrossRef]

Asseh, A.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[CrossRef]

Brennan, J. F.

Chan, C. C.

Chen, X.

Y. Cheng, J. Li, Z. Yin, T. Pu, L. Lu, J. Zheng, and X. Chen, “OCDMA en/decoders employing multiple π equivalent phase shifts,” IEEE Photon. Technol. Lett. 21(24), 1795–1797 (2009).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber Bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photon. Technol. Lett. 18(8), 941–943 (2006).
[CrossRef]

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[CrossRef]

X. Chen, J. Yao, F. Zeng, and Z. Deng“Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(7), 1390–1392 (2005).
[CrossRef]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
[CrossRef]

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29(12), 1333–1335 (2004).
[CrossRef] [PubMed]

Cheng, Y.

Y. Cheng, J. Li, Z. Yin, T. Pu, L. Lu, J. Zheng, and X. Chen, “OCDMA en/decoders employing multiple π equivalent phase shifts,” IEEE Photon. Technol. Lett. 21(24), 1795–1797 (2009).
[CrossRef]

Chou, P. C.

Cui, Y.

Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett. 17(10), 2044–2046 (2005).
[CrossRef]

Dai, Y.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber Bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photon. Technol. Lett. 18(8), 941–943 (2006).
[CrossRef]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
[CrossRef]

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29(12), 1333–1335 (2004).
[CrossRef] [PubMed]

Deng, Z.

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[CrossRef]

X. Chen, J. Yao, F. Zeng, and Z. Deng“Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(7), 1390–1392 (2005).
[CrossRef]

Dong, X.

Fan, C.

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
[CrossRef]

Forghieri, F.

L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16×10 Gb/s WDM transmission over 840-km SMF using eleven broad-band chirped fiber gratings,” IEEE Photon. Technol. Lett. 11(4), 484–486 (1999).
[CrossRef]

Froehlich, H. G.

R. Kashyap, H. G. Froehlich, A. Swanton, and D. J. Armes, “1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation,” Electron. Lett. 32(19), 1807–1809 (1996).
[CrossRef]

Garrett, L. D.

L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16×10 Gb/s WDM transmission over 840-km SMF using eleven broad-band chirped fiber gratings,” IEEE Photon. Technol. Lett. 11(4), 484–486 (1999).
[CrossRef]

Ge, J.

J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun. 284(13), 3251–3257 (2011).
[CrossRef]

Gnauck, A. H.

L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16×10 Gb/s WDM transmission over 840-km SMF using eleven broad-band chirped fiber gratings,” IEEE Photon. Technol. Lett. 11(4), 484–486 (1999).
[CrossRef]

Gusmeroli, V.

L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16×10 Gb/s WDM transmission over 840-km SMF using eleven broad-band chirped fiber gratings,” IEEE Photon. Technol. Lett. 11(4), 484–486 (1999).
[CrossRef]

Haus, H. A.

Hotate, K.

Ibsen, M.

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(2), 154–156 (2001).
[CrossRef]

Jiang, D.

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
[CrossRef]

Kajiwara, K.

Kashyap, R.

R. Kashyap, H. G. Froehlich, A. Swanton, and D. J. Armes, “1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation,” Electron. Lett. 32(19), 1807–1809 (1996).
[CrossRef]

Lee, H.

Li, J.

Y. Cheng, J. Li, Z. Yin, T. Pu, L. Lu, J. Zheng, and X. Chen, “OCDMA en/decoders employing multiple π equivalent phase shifts,” IEEE Photon. Technol. Lett. 21(24), 1795–1797 (2009).
[CrossRef]

Li, M.

M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(21), 1559–1561 (2010).
[CrossRef]

Lu, C.

Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett. 17(10), 2044–2046 (2005).
[CrossRef]

Lu, L.

Y. Cheng, J. Li, Z. Yin, T. Pu, L. Lu, J. Zheng, and X. Chen, “OCDMA en/decoders employing multiple π equivalent phase shifts,” IEEE Photon. Technol. Lett. 21(24), 1795–1797 (2009).
[CrossRef]

Ng, J.

Ngo, N. Q.

Petropoulos, P.

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(2), 154–156 (2001).
[CrossRef]

Pu, T.

Y. Cheng, J. Li, Z. Yin, T. Pu, L. Lu, J. Zheng, and X. Chen, “OCDMA en/decoders employing multiple π equivalent phase shifts,” IEEE Photon. Technol. Lett. 21(24), 1795–1797 (2009).
[CrossRef]

Richardson, D. J.

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(2), 154–156 (2001).
[CrossRef]

Sahlgren, B. E.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[CrossRef]

Sandgren, S.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[CrossRef]

Scarano, D.

L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16×10 Gb/s WDM transmission over 840-km SMF using eleven broad-band chirped fiber gratings,” IEEE Photon. Technol. Lett. 11(4), 484–486 (1999).
[CrossRef]

Shum, P.

Storoy, H.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[CrossRef]

Stubbe, R. A. H.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[CrossRef]

Sun, J.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber Bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photon. Technol. Lett. 18(8), 941–943 (2006).
[CrossRef]

Swanton, A.

R. Kashyap, H. G. Froehlich, A. Swanton, and D. J. Armes, “1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation,” Electron. Lett. 32(19), 1807–1809 (1996).
[CrossRef]

Teh, P. C.

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(2), 154–156 (2001).
[CrossRef]

Wang, C.

J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun. 284(13), 3251–3257 (2011).
[CrossRef]

Wang, J.

Wang, Z.

Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett. 17(10), 2044–2046 (2005).
[CrossRef]

Xia, L.

Xie, S.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber Bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photon. Technol. Lett. 18(8), 941–943 (2006).
[CrossRef]

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett. 29(12), 1333–1335 (2004).
[CrossRef] [PubMed]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
[CrossRef]

Yao, J.

M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(21), 1559–1561 (2010).
[CrossRef]

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[CrossRef]

F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30(17), 2203–2205 (2005).
[CrossRef] [PubMed]

X. Chen, J. Yao, F. Zeng, and Z. Deng“Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(7), 1390–1392 (2005).
[CrossRef]

Yao, Y.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber Bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photon. Technol. Lett. 18(8), 941–943 (2006).
[CrossRef]

Yin, Z.

Y. Cheng, J. Li, Z. Yin, T. Pu, L. Lu, J. Zheng, and X. Chen, “OCDMA en/decoders employing multiple π equivalent phase shifts,” IEEE Photon. Technol. Lett. 21(24), 1795–1797 (2009).
[CrossRef]

Yun, B.

Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett. 17(10), 2044–2046 (2005).
[CrossRef]

Zeng, F.

X. Chen, J. Yao, F. Zeng, and Z. Deng“Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(7), 1390–1392 (2005).
[CrossRef]

F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30(17), 2203–2205 (2005).
[CrossRef] [PubMed]

Zhang, Y.

Zhao, C.

Zheng, J.

Y. Cheng, J. Li, Z. Yin, T. Pu, L. Lu, J. Zheng, and X. Chen, “OCDMA en/decoders employing multiple π equivalent phase shifts,” IEEE Photon. Technol. Lett. 21(24), 1795–1797 (2009).
[CrossRef]

Zhu, X.

J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun. 284(13), 3251–3257 (2011).
[CrossRef]

Electron. Lett.

R. Kashyap, H. G. Froehlich, A. Swanton, and D. J. Armes, “1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation,” Electron. Lett. 32(19), 1807–1809 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Cheng, J. Li, Z. Yin, T. Pu, L. Lu, J. Zheng, and X. Chen, “OCDMA en/decoders employing multiple π equivalent phase shifts,” IEEE Photon. Technol. Lett. 21(24), 1795–1797 (2009).
[CrossRef]

L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16×10 Gb/s WDM transmission over 840-km SMF using eleven broad-band chirped fiber gratings,” IEEE Photon. Technol. Lett. 11(4), 484–486 (1999).
[CrossRef]

Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett. 17(10), 2044–2046 (2005).
[CrossRef]

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10Gb/s using superstructured fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(2), 154–156 (2001).
[CrossRef]

M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(21), 1559–1561 (2010).
[CrossRef]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16(10), 2284–2286 (2004).
[CrossRef]

X. Chen, J. Yao, F. Zeng, and Z. Deng“Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(7), 1390–1392 (2005).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber Bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photon. Technol. Lett. 18(8), 941–943 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech. 54(2), 804–809 (2006).
[CrossRef]

J. Lightwave Technol.

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” J. Lightwave Technol. 15(8), 1419–1423 (1997).
[CrossRef]

Opt. Commun.

J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun. 284(13), 3251–3257 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of using the EPS to compensate and obtain the OPS.

Fig. 2
Fig. 2

(a), (b) and (c) Simulation results of Ex.1, (d), (e) and (f) Simulation results of Ex.2.

Fig. 3
Fig. 3

Schematic configuration of the FBG fabrication system with two phase masks.

Fig. 4
Fig. 4

(a) Reflection spectrum of the 0th channel at different EPS, (b) Reflection spectrum of the −1st channel at different EPS, (c) Reflection spectrum of the +1st channel at different EPS, (d) Reflection spectrum of the fabricated FBG with π phase shift at the −1st channel.

Tables (1)

Tables Icon

Table 1 Parameters used in simulation

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δn={ S 1 (z)exp(j 2πz Λ )+c.c, (z< z k ) S 2 (z)exp(j 2πz Λ +jβ)+c.c, (z z k )
Δ n s (z)= A s (z)exp[j 2πz Λ s +j φ s (z)]+c.c
S 1 (z)= m F m A(z)exp{j 2πm P [z+ P φ s (z) 2πm ]}, (z< z k )
S 2 (z)= m F m A(z)exp{j 2πm P [z+ P( φ s (z)β) 2πm ]}, (z z k )
e m = 2πmΔ z k P =2Nπβ

Metrics