Abstract

The practical problem of imaging scatterers that are separable from the known obstacles is addressed. Using such a priori information, the obstacle is regarded as a known scatterer rather than part of the background and can be excluded from the retrieving process by reformulating the cost function. As a result, the proposed method transforms the problem into an inverse scattering problem with homogeneous background, and avoids the computationally intensive calculation of Green’s function for inhomogeneous background (bases of the physical model of the problem). Meanwhile, the factors that influence the imaging quality for such kind of problem are also analyzed. Various difficult numerical examples are presented to show the good performance of our method. In addition, a data set of scattering experiments from the Institut Fresnel is tested to verify the validity of our method.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Fiddy and M. Testorf, “Inverse scattering method applied to the synthesis of strongly scattering structures,” Opt. Express 14(5), 2037–2046 (2006).
    [CrossRef] [PubMed]
  2. P. C. Chaumet, K. Belkebir, and R. Lencrerot, “Three-dimensional optical imaging in layered media,” Opt. Express 14(8), 3415–3426 (2006).
    [CrossRef] [PubMed]
  3. R. J. He, L. Y. Rao, S. Liu, W. L. Yan, P. A. Narayana, and H. Brauer, “The method of maximum mutual information for biomedical electromagnetic inverse problems,” IEEE Trans. Magn. 36(4), 1741–1744 (2000).
    [CrossRef]
  4. S. M. Ali, N. K. Nikolova, and M. H. Bakr, “Non-destructive testing and evaluation utilizing frequency-domain EM modeling,” in Proceedings of the Second IASTED International Conference on Antennas, Radar, and Wave Propagation (Banff, CANADA, 2005), pp. 29–34.
  5. S. Caorsi, A. Massa, and M. Pastorino, “A crack identification microwave procedure based on a genetic algorithm for nondestructive testing,” IEEE Trans. Antenn. Propag. 49(12), 1812–1820 (2001).
    [CrossRef]
  6. S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for non-destructive evaluations of two-dimensional structures,” IEEE Trans. Antenn. Propag. 52(6), 1386–1397 (2004).
    [CrossRef]
  7. A. Massa, M. Pastorino, A. Rosani, and M. Benedetti, “A microwave imaging method for NDE/NDT based on the SMW technique for the electromagnetic field prediction,” IEEE Trans. Instrum. Meas. 55(1), 240–247 (2006).
    [CrossRef]
  8. M. Benedetti, M. Donelli, and A. Massa, “Multicrack detection in two-dimensional structures by means of GA-based strategies,” IEEE Trans. Antenn. Propag. 55(1), 205–215 (2007).
    [CrossRef]
  9. M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential SAR,” IEEE Trans. Geosci. Rem. Sens. 47(5), 1289–1296 (2009).
    [CrossRef]
  10. L. P. Song, C. Yu, and Q. H. Liu, “Through-wall imaging (TWI) by radar: 2D tomographic results and analyses,” IEEE Trans. Geosci. Rem. Sens. 43(12), 2793–2798 (2005).
    [CrossRef]
  11. A. J. Devaney and R. P. Porter, “Holography and the inverse source problem. Part II: Inhomogeneous media,” J. Opt. Soc. Am. A 2(11), 2006–2012 (1985).
    [CrossRef]
  12. J. M. Tualle, J. Prat, E. Tinet, and S. Avrillier, “Real-space Green’s function calculation for the solution of the diffusion equation in stratified turbid media,” J. Opt. Soc. Am. A 17(11), 2046–2055 (2000).
    [CrossRef] [PubMed]
  13. S. He, L. Zhuang, F. Zhang, W. Hu, and G. Zhu, “Investigation of range profiles from buried 3-D object based on the EM simulation,” Opt. Express 19(13), 12291–12304 (2011).
    [CrossRef] [PubMed]
  14. S. Caorsi, A. Massa, M. Pastorino, M. Raffetto, and A. Randazzo, “Detection of buried inhomogeneous elliptic cylinders by a memetic algorithm,” IEEE Trans. Antenn. Propag. 51(10), 2878–2884 (2003).
    [CrossRef]
  15. X. Chen, “Subspace-based optimization method for inverse scattering problems with an inhomogeneous background medium,” Inverse Probl. 26(7), 074007 (2010).
    [CrossRef]
  16. A. Abubakar, W. Hu, P. M. van den Berg, and T. M. Habashy, “A finite-difference contrast source inversion method,” Inverse Probl. 24(6), 065004 (2008).
    [CrossRef]
  17. X. Ye, Y. Zhong, and X. Chen, “Reconstructing perfectly electric conductors by subspace-based optimization method with continuous variables,” Inverse Probl. 27(5), 055011 (2011).
    [CrossRef]
  18. A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact Newton method-experimental validation,” Microw. Opt. Technol. Lett. 53(12), 2834–2838 (2011).
    [CrossRef]
  19. X. Ye, X. Chen, Y. Zhong, and K. Agarwal, “Subspace-based optimization method for reconstructing perfectly electric conductors,” Prog. Electromagn. Res. 100, 119–128 (2010).
    [CrossRef]
  20. S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microwave Theory Tech. 51(4), 1162–1173 (2003).
    [CrossRef]
  21. M. Donelli, G. Franceschini, A. Martini, and A. Massa, “An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems,” IEEE Trans. Geosci. Rem. Sens. 44(2), 298–312 (2006).
    [CrossRef]
  22. M. Donelli, D. Franceschini, P. Rocca, and A. Massa, “Three-dimensional microwave imaging problems solved through an efficient multiscaling particle swarm optimization,” IEEE Trans. Geosci. Rem. Sens. 47(5), 1467–1481 (2009).
    [CrossRef]
  23. A. Y. Qing, “Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES),” IEEE Trans. Antenn. Propag. 52(5), 1223–1229 (2004).
    [CrossRef]
  24. P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25(12), 123003 (2009).
    [CrossRef]
  25. X. Chen, “Application of signal-subspace and optimization methods in reconstructing extended scatterers,” J. Opt. Soc. Am. A 26(4), 1022–1026 (2009).
    [CrossRef] [PubMed]
  26. J. Shen, X. Chen, Y. Zhong, and L. Ran, “Inverse scattering problem in presence of a conducting cylinder,” Opt. Express 19(11), 10698–10706 (2011).
    [CrossRef] [PubMed]
  27. J. M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering database continuation: experimental set-up and measurement precision,” Inverse Probl. 21(6), S117–S130 (2005).
    [CrossRef]
  28. O. M. Bucci, N. Cardace, L. Crocco, and T. Isernia, “Degree of nonlinearity and a new solution procedure in scalar two-dimensional inverse scattering problems,” J. Opt. Soc. Am. A 18(8), 1832–1843 (2001).
    [CrossRef] [PubMed]
  29. M. D’Urso, T. Isernia, and A. F. Morabito, “On the Solution of 2-D Inverse Scattering Problems via Source-Type Integral Equations,” IEEE Trans. Geosci. Rem. Sens. 48(3), 1186–1198 (2010).
    [CrossRef]
  30. R. Autieri, M. D’Urso, T. Isernia, and V. Pascazio, “Inverse Profiling via an Effective Linearized Scattering Model and MRF Regularization,” IEEE Trans. Geosci. Rem. Sens. 8(6), 1021–1025 (2011).
    [CrossRef]
  31. T. Cui, Y. Qin, Y. Ye, J. Wu, G. Wang, and W. Chew, “Efficient low-frequency inversion of 3-D buried objects with large contrasts,” IEEE Trans. Geosci. Rem. Sens. 44(1), 3–9 (2006).
    [CrossRef]
  32. W. Chew and J. Lin, “A frequency-hopping approach for microwave imaging of large inhomogeineous bodies,” IEEE Microw. Guid. Wave Lett. 5(12), 439–441 (1995).
    [CrossRef]
  33. J. Ma, W. Chew, C. Lu, and J. Song, “Image reconstruction from TE scattering data using equation of strong permittivity fluctuation,” IEEE Trans. Antenn. Propag. 48(6), 860–867 (2000).
    [CrossRef]
  34. W. C. Chew, Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.
  35. J. A. Kong, Electromagnetic Wave Theory (EMW. 2000).

2011 (5)

S. He, L. Zhuang, F. Zhang, W. Hu, and G. Zhu, “Investigation of range profiles from buried 3-D object based on the EM simulation,” Opt. Express 19(13), 12291–12304 (2011).
[CrossRef] [PubMed]

X. Ye, Y. Zhong, and X. Chen, “Reconstructing perfectly electric conductors by subspace-based optimization method with continuous variables,” Inverse Probl. 27(5), 055011 (2011).
[CrossRef]

A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact Newton method-experimental validation,” Microw. Opt. Technol. Lett. 53(12), 2834–2838 (2011).
[CrossRef]

J. Shen, X. Chen, Y. Zhong, and L. Ran, “Inverse scattering problem in presence of a conducting cylinder,” Opt. Express 19(11), 10698–10706 (2011).
[CrossRef] [PubMed]

R. Autieri, M. D’Urso, T. Isernia, and V. Pascazio, “Inverse Profiling via an Effective Linearized Scattering Model and MRF Regularization,” IEEE Trans. Geosci. Rem. Sens. 8(6), 1021–1025 (2011).
[CrossRef]

2010 (3)

M. D’Urso, T. Isernia, and A. F. Morabito, “On the Solution of 2-D Inverse Scattering Problems via Source-Type Integral Equations,” IEEE Trans. Geosci. Rem. Sens. 48(3), 1186–1198 (2010).
[CrossRef]

X. Ye, X. Chen, Y. Zhong, and K. Agarwal, “Subspace-based optimization method for reconstructing perfectly electric conductors,” Prog. Electromagn. Res. 100, 119–128 (2010).
[CrossRef]

X. Chen, “Subspace-based optimization method for inverse scattering problems with an inhomogeneous background medium,” Inverse Probl. 26(7), 074007 (2010).
[CrossRef]

2009 (4)

M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential SAR,” IEEE Trans. Geosci. Rem. Sens. 47(5), 1289–1296 (2009).
[CrossRef]

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25(12), 123003 (2009).
[CrossRef]

X. Chen, “Application of signal-subspace and optimization methods in reconstructing extended scatterers,” J. Opt. Soc. Am. A 26(4), 1022–1026 (2009).
[CrossRef] [PubMed]

M. Donelli, D. Franceschini, P. Rocca, and A. Massa, “Three-dimensional microwave imaging problems solved through an efficient multiscaling particle swarm optimization,” IEEE Trans. Geosci. Rem. Sens. 47(5), 1467–1481 (2009).
[CrossRef]

2008 (1)

A. Abubakar, W. Hu, P. M. van den Berg, and T. M. Habashy, “A finite-difference contrast source inversion method,” Inverse Probl. 24(6), 065004 (2008).
[CrossRef]

2007 (1)

M. Benedetti, M. Donelli, and A. Massa, “Multicrack detection in two-dimensional structures by means of GA-based strategies,” IEEE Trans. Antenn. Propag. 55(1), 205–215 (2007).
[CrossRef]

2006 (5)

A. Massa, M. Pastorino, A. Rosani, and M. Benedetti, “A microwave imaging method for NDE/NDT based on the SMW technique for the electromagnetic field prediction,” IEEE Trans. Instrum. Meas. 55(1), 240–247 (2006).
[CrossRef]

M. A. Fiddy and M. Testorf, “Inverse scattering method applied to the synthesis of strongly scattering structures,” Opt. Express 14(5), 2037–2046 (2006).
[CrossRef] [PubMed]

P. C. Chaumet, K. Belkebir, and R. Lencrerot, “Three-dimensional optical imaging in layered media,” Opt. Express 14(8), 3415–3426 (2006).
[CrossRef] [PubMed]

M. Donelli, G. Franceschini, A. Martini, and A. Massa, “An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems,” IEEE Trans. Geosci. Rem. Sens. 44(2), 298–312 (2006).
[CrossRef]

T. Cui, Y. Qin, Y. Ye, J. Wu, G. Wang, and W. Chew, “Efficient low-frequency inversion of 3-D buried objects with large contrasts,” IEEE Trans. Geosci. Rem. Sens. 44(1), 3–9 (2006).
[CrossRef]

2005 (2)

J. M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering database continuation: experimental set-up and measurement precision,” Inverse Probl. 21(6), S117–S130 (2005).
[CrossRef]

L. P. Song, C. Yu, and Q. H. Liu, “Through-wall imaging (TWI) by radar: 2D tomographic results and analyses,” IEEE Trans. Geosci. Rem. Sens. 43(12), 2793–2798 (2005).
[CrossRef]

2004 (2)

S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for non-destructive evaluations of two-dimensional structures,” IEEE Trans. Antenn. Propag. 52(6), 1386–1397 (2004).
[CrossRef]

A. Y. Qing, “Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES),” IEEE Trans. Antenn. Propag. 52(5), 1223–1229 (2004).
[CrossRef]

2003 (2)

S. Caorsi, A. Massa, M. Pastorino, M. Raffetto, and A. Randazzo, “Detection of buried inhomogeneous elliptic cylinders by a memetic algorithm,” IEEE Trans. Antenn. Propag. 51(10), 2878–2884 (2003).
[CrossRef]

S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microwave Theory Tech. 51(4), 1162–1173 (2003).
[CrossRef]

2001 (2)

S. Caorsi, A. Massa, and M. Pastorino, “A crack identification microwave procedure based on a genetic algorithm for nondestructive testing,” IEEE Trans. Antenn. Propag. 49(12), 1812–1820 (2001).
[CrossRef]

O. M. Bucci, N. Cardace, L. Crocco, and T. Isernia, “Degree of nonlinearity and a new solution procedure in scalar two-dimensional inverse scattering problems,” J. Opt. Soc. Am. A 18(8), 1832–1843 (2001).
[CrossRef] [PubMed]

2000 (3)

J. M. Tualle, J. Prat, E. Tinet, and S. Avrillier, “Real-space Green’s function calculation for the solution of the diffusion equation in stratified turbid media,” J. Opt. Soc. Am. A 17(11), 2046–2055 (2000).
[CrossRef] [PubMed]

J. Ma, W. Chew, C. Lu, and J. Song, “Image reconstruction from TE scattering data using equation of strong permittivity fluctuation,” IEEE Trans. Antenn. Propag. 48(6), 860–867 (2000).
[CrossRef]

R. J. He, L. Y. Rao, S. Liu, W. L. Yan, P. A. Narayana, and H. Brauer, “The method of maximum mutual information for biomedical electromagnetic inverse problems,” IEEE Trans. Magn. 36(4), 1741–1744 (2000).
[CrossRef]

1995 (1)

W. Chew and J. Lin, “A frequency-hopping approach for microwave imaging of large inhomogeineous bodies,” IEEE Microw. Guid. Wave Lett. 5(12), 439–441 (1995).
[CrossRef]

1985 (1)

Abubakar, A.

A. Abubakar, W. Hu, P. M. van den Berg, and T. M. Habashy, “A finite-difference contrast source inversion method,” Inverse Probl. 24(6), 065004 (2008).
[CrossRef]

Agarwal, K.

X. Ye, X. Chen, Y. Zhong, and K. Agarwal, “Subspace-based optimization method for reconstructing perfectly electric conductors,” Prog. Electromagn. Res. 100, 119–128 (2010).
[CrossRef]

Autieri, R.

R. Autieri, M. D’Urso, T. Isernia, and V. Pascazio, “Inverse Profiling via an Effective Linearized Scattering Model and MRF Regularization,” IEEE Trans. Geosci. Rem. Sens. 8(6), 1021–1025 (2011).
[CrossRef]

Avrillier, S.

Belkebir, K.

Benedetti, M.

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25(12), 123003 (2009).
[CrossRef]

M. Benedetti, M. Donelli, and A. Massa, “Multicrack detection in two-dimensional structures by means of GA-based strategies,” IEEE Trans. Antenn. Propag. 55(1), 205–215 (2007).
[CrossRef]

A. Massa, M. Pastorino, A. Rosani, and M. Benedetti, “A microwave imaging method for NDE/NDT based on the SMW technique for the electromagnetic field prediction,” IEEE Trans. Instrum. Meas. 55(1), 240–247 (2006).
[CrossRef]

Brauer, H.

R. J. He, L. Y. Rao, S. Liu, W. L. Yan, P. A. Narayana, and H. Brauer, “The method of maximum mutual information for biomedical electromagnetic inverse problems,” IEEE Trans. Magn. 36(4), 1741–1744 (2000).
[CrossRef]

Bucci, O. M.

Caorsi, S.

S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for non-destructive evaluations of two-dimensional structures,” IEEE Trans. Antenn. Propag. 52(6), 1386–1397 (2004).
[CrossRef]

S. Caorsi, A. Massa, M. Pastorino, M. Raffetto, and A. Randazzo, “Detection of buried inhomogeneous elliptic cylinders by a memetic algorithm,” IEEE Trans. Antenn. Propag. 51(10), 2878–2884 (2003).
[CrossRef]

S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microwave Theory Tech. 51(4), 1162–1173 (2003).
[CrossRef]

S. Caorsi, A. Massa, and M. Pastorino, “A crack identification microwave procedure based on a genetic algorithm for nondestructive testing,” IEEE Trans. Antenn. Propag. 49(12), 1812–1820 (2001).
[CrossRef]

Cardace, N.

Chaumet, P. C.

Chen, X.

J. Shen, X. Chen, Y. Zhong, and L. Ran, “Inverse scattering problem in presence of a conducting cylinder,” Opt. Express 19(11), 10698–10706 (2011).
[CrossRef] [PubMed]

X. Ye, Y. Zhong, and X. Chen, “Reconstructing perfectly electric conductors by subspace-based optimization method with continuous variables,” Inverse Probl. 27(5), 055011 (2011).
[CrossRef]

X. Ye, X. Chen, Y. Zhong, and K. Agarwal, “Subspace-based optimization method for reconstructing perfectly electric conductors,” Prog. Electromagn. Res. 100, 119–128 (2010).
[CrossRef]

X. Chen, “Subspace-based optimization method for inverse scattering problems with an inhomogeneous background medium,” Inverse Probl. 26(7), 074007 (2010).
[CrossRef]

X. Chen, “Application of signal-subspace and optimization methods in reconstructing extended scatterers,” J. Opt. Soc. Am. A 26(4), 1022–1026 (2009).
[CrossRef] [PubMed]

Chew, W.

T. Cui, Y. Qin, Y. Ye, J. Wu, G. Wang, and W. Chew, “Efficient low-frequency inversion of 3-D buried objects with large contrasts,” IEEE Trans. Geosci. Rem. Sens. 44(1), 3–9 (2006).
[CrossRef]

J. Ma, W. Chew, C. Lu, and J. Song, “Image reconstruction from TE scattering data using equation of strong permittivity fluctuation,” IEEE Trans. Antenn. Propag. 48(6), 860–867 (2000).
[CrossRef]

W. Chew and J. Lin, “A frequency-hopping approach for microwave imaging of large inhomogeineous bodies,” IEEE Microw. Guid. Wave Lett. 5(12), 439–441 (1995).
[CrossRef]

Crocco, L.

Cui, T.

T. Cui, Y. Qin, Y. Ye, J. Wu, G. Wang, and W. Chew, “Efficient low-frequency inversion of 3-D buried objects with large contrasts,” IEEE Trans. Geosci. Rem. Sens. 44(1), 3–9 (2006).
[CrossRef]

D’Urso, M.

R. Autieri, M. D’Urso, T. Isernia, and V. Pascazio, “Inverse Profiling via an Effective Linearized Scattering Model and MRF Regularization,” IEEE Trans. Geosci. Rem. Sens. 8(6), 1021–1025 (2011).
[CrossRef]

M. D’Urso, T. Isernia, and A. F. Morabito, “On the Solution of 2-D Inverse Scattering Problems via Source-Type Integral Equations,” IEEE Trans. Geosci. Rem. Sens. 48(3), 1186–1198 (2010).
[CrossRef]

Dehmollaian, M.

M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential SAR,” IEEE Trans. Geosci. Rem. Sens. 47(5), 1289–1296 (2009).
[CrossRef]

Devaney, A. J.

Donelli, M.

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25(12), 123003 (2009).
[CrossRef]

M. Donelli, D. Franceschini, P. Rocca, and A. Massa, “Three-dimensional microwave imaging problems solved through an efficient multiscaling particle swarm optimization,” IEEE Trans. Geosci. Rem. Sens. 47(5), 1467–1481 (2009).
[CrossRef]

M. Benedetti, M. Donelli, and A. Massa, “Multicrack detection in two-dimensional structures by means of GA-based strategies,” IEEE Trans. Antenn. Propag. 55(1), 205–215 (2007).
[CrossRef]

M. Donelli, G. Franceschini, A. Martini, and A. Massa, “An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems,” IEEE Trans. Geosci. Rem. Sens. 44(2), 298–312 (2006).
[CrossRef]

S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for non-destructive evaluations of two-dimensional structures,” IEEE Trans. Antenn. Propag. 52(6), 1386–1397 (2004).
[CrossRef]

S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microwave Theory Tech. 51(4), 1162–1173 (2003).
[CrossRef]

Eyraud, C.

J. M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering database continuation: experimental set-up and measurement precision,” Inverse Probl. 21(6), S117–S130 (2005).
[CrossRef]

Fiddy, M. A.

Franceschini, D.

M. Donelli, D. Franceschini, P. Rocca, and A. Massa, “Three-dimensional microwave imaging problems solved through an efficient multiscaling particle swarm optimization,” IEEE Trans. Geosci. Rem. Sens. 47(5), 1467–1481 (2009).
[CrossRef]

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25(12), 123003 (2009).
[CrossRef]

S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microwave Theory Tech. 51(4), 1162–1173 (2003).
[CrossRef]

Franceschini, G.

M. Donelli, G. Franceschini, A. Martini, and A. Massa, “An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems,” IEEE Trans. Geosci. Rem. Sens. 44(2), 298–312 (2006).
[CrossRef]

Geffrin, J. M.

J. M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering database continuation: experimental set-up and measurement precision,” Inverse Probl. 21(6), S117–S130 (2005).
[CrossRef]

Habashy, T. M.

A. Abubakar, W. Hu, P. M. van den Berg, and T. M. Habashy, “A finite-difference contrast source inversion method,” Inverse Probl. 24(6), 065004 (2008).
[CrossRef]

He, R. J.

R. J. He, L. Y. Rao, S. Liu, W. L. Yan, P. A. Narayana, and H. Brauer, “The method of maximum mutual information for biomedical electromagnetic inverse problems,” IEEE Trans. Magn. 36(4), 1741–1744 (2000).
[CrossRef]

He, S.

Hu, W.

S. He, L. Zhuang, F. Zhang, W. Hu, and G. Zhu, “Investigation of range profiles from buried 3-D object based on the EM simulation,” Opt. Express 19(13), 12291–12304 (2011).
[CrossRef] [PubMed]

A. Abubakar, W. Hu, P. M. van den Berg, and T. M. Habashy, “A finite-difference contrast source inversion method,” Inverse Probl. 24(6), 065004 (2008).
[CrossRef]

Isernia, T.

R. Autieri, M. D’Urso, T. Isernia, and V. Pascazio, “Inverse Profiling via an Effective Linearized Scattering Model and MRF Regularization,” IEEE Trans. Geosci. Rem. Sens. 8(6), 1021–1025 (2011).
[CrossRef]

M. D’Urso, T. Isernia, and A. F. Morabito, “On the Solution of 2-D Inverse Scattering Problems via Source-Type Integral Equations,” IEEE Trans. Geosci. Rem. Sens. 48(3), 1186–1198 (2010).
[CrossRef]

O. M. Bucci, N. Cardace, L. Crocco, and T. Isernia, “Degree of nonlinearity and a new solution procedure in scalar two-dimensional inverse scattering problems,” J. Opt. Soc. Am. A 18(8), 1832–1843 (2001).
[CrossRef] [PubMed]

Lencrerot, R.

Lin, J.

W. Chew and J. Lin, “A frequency-hopping approach for microwave imaging of large inhomogeineous bodies,” IEEE Microw. Guid. Wave Lett. 5(12), 439–441 (1995).
[CrossRef]

Liu, Q. H.

L. P. Song, C. Yu, and Q. H. Liu, “Through-wall imaging (TWI) by radar: 2D tomographic results and analyses,” IEEE Trans. Geosci. Rem. Sens. 43(12), 2793–2798 (2005).
[CrossRef]

Liu, S.

R. J. He, L. Y. Rao, S. Liu, W. L. Yan, P. A. Narayana, and H. Brauer, “The method of maximum mutual information for biomedical electromagnetic inverse problems,” IEEE Trans. Magn. 36(4), 1741–1744 (2000).
[CrossRef]

Lu, C.

J. Ma, W. Chew, C. Lu, and J. Song, “Image reconstruction from TE scattering data using equation of strong permittivity fluctuation,” IEEE Trans. Antenn. Propag. 48(6), 860–867 (2000).
[CrossRef]

Ma, J.

J. Ma, W. Chew, C. Lu, and J. Song, “Image reconstruction from TE scattering data using equation of strong permittivity fluctuation,” IEEE Trans. Antenn. Propag. 48(6), 860–867 (2000).
[CrossRef]

Martini, A.

M. Donelli, G. Franceschini, A. Martini, and A. Massa, “An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems,” IEEE Trans. Geosci. Rem. Sens. 44(2), 298–312 (2006).
[CrossRef]

Massa, A.

A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact Newton method-experimental validation,” Microw. Opt. Technol. Lett. 53(12), 2834–2838 (2011).
[CrossRef]

M. Donelli, D. Franceschini, P. Rocca, and A. Massa, “Three-dimensional microwave imaging problems solved through an efficient multiscaling particle swarm optimization,” IEEE Trans. Geosci. Rem. Sens. 47(5), 1467–1481 (2009).
[CrossRef]

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25(12), 123003 (2009).
[CrossRef]

M. Benedetti, M. Donelli, and A. Massa, “Multicrack detection in two-dimensional structures by means of GA-based strategies,” IEEE Trans. Antenn. Propag. 55(1), 205–215 (2007).
[CrossRef]

A. Massa, M. Pastorino, A. Rosani, and M. Benedetti, “A microwave imaging method for NDE/NDT based on the SMW technique for the electromagnetic field prediction,” IEEE Trans. Instrum. Meas. 55(1), 240–247 (2006).
[CrossRef]

M. Donelli, G. Franceschini, A. Martini, and A. Massa, “An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems,” IEEE Trans. Geosci. Rem. Sens. 44(2), 298–312 (2006).
[CrossRef]

S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for non-destructive evaluations of two-dimensional structures,” IEEE Trans. Antenn. Propag. 52(6), 1386–1397 (2004).
[CrossRef]

S. Caorsi, A. Massa, M. Pastorino, M. Raffetto, and A. Randazzo, “Detection of buried inhomogeneous elliptic cylinders by a memetic algorithm,” IEEE Trans. Antenn. Propag. 51(10), 2878–2884 (2003).
[CrossRef]

S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microwave Theory Tech. 51(4), 1162–1173 (2003).
[CrossRef]

S. Caorsi, A. Massa, and M. Pastorino, “A crack identification microwave procedure based on a genetic algorithm for nondestructive testing,” IEEE Trans. Antenn. Propag. 49(12), 1812–1820 (2001).
[CrossRef]

Morabito, A. F.

M. D’Urso, T. Isernia, and A. F. Morabito, “On the Solution of 2-D Inverse Scattering Problems via Source-Type Integral Equations,” IEEE Trans. Geosci. Rem. Sens. 48(3), 1186–1198 (2010).
[CrossRef]

Narayana, P. A.

R. J. He, L. Y. Rao, S. Liu, W. L. Yan, P. A. Narayana, and H. Brauer, “The method of maximum mutual information for biomedical electromagnetic inverse problems,” IEEE Trans. Magn. 36(4), 1741–1744 (2000).
[CrossRef]

Oliveri, G.

A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact Newton method-experimental validation,” Microw. Opt. Technol. Lett. 53(12), 2834–2838 (2011).
[CrossRef]

Pascazio, V.

R. Autieri, M. D’Urso, T. Isernia, and V. Pascazio, “Inverse Profiling via an Effective Linearized Scattering Model and MRF Regularization,” IEEE Trans. Geosci. Rem. Sens. 8(6), 1021–1025 (2011).
[CrossRef]

Pastorino, M.

A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact Newton method-experimental validation,” Microw. Opt. Technol. Lett. 53(12), 2834–2838 (2011).
[CrossRef]

A. Massa, M. Pastorino, A. Rosani, and M. Benedetti, “A microwave imaging method for NDE/NDT based on the SMW technique for the electromagnetic field prediction,” IEEE Trans. Instrum. Meas. 55(1), 240–247 (2006).
[CrossRef]

S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for non-destructive evaluations of two-dimensional structures,” IEEE Trans. Antenn. Propag. 52(6), 1386–1397 (2004).
[CrossRef]

S. Caorsi, A. Massa, M. Pastorino, M. Raffetto, and A. Randazzo, “Detection of buried inhomogeneous elliptic cylinders by a memetic algorithm,” IEEE Trans. Antenn. Propag. 51(10), 2878–2884 (2003).
[CrossRef]

S. Caorsi, A. Massa, and M. Pastorino, “A crack identification microwave procedure based on a genetic algorithm for nondestructive testing,” IEEE Trans. Antenn. Propag. 49(12), 1812–1820 (2001).
[CrossRef]

Porter, R. P.

Prat, J.

Qin, Y.

T. Cui, Y. Qin, Y. Ye, J. Wu, G. Wang, and W. Chew, “Efficient low-frequency inversion of 3-D buried objects with large contrasts,” IEEE Trans. Geosci. Rem. Sens. 44(1), 3–9 (2006).
[CrossRef]

Qing, A. Y.

A. Y. Qing, “Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES),” IEEE Trans. Antenn. Propag. 52(5), 1223–1229 (2004).
[CrossRef]

Raffetto, M.

S. Caorsi, A. Massa, M. Pastorino, M. Raffetto, and A. Randazzo, “Detection of buried inhomogeneous elliptic cylinders by a memetic algorithm,” IEEE Trans. Antenn. Propag. 51(10), 2878–2884 (2003).
[CrossRef]

Ran, L.

Randazzo, A.

A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact Newton method-experimental validation,” Microw. Opt. Technol. Lett. 53(12), 2834–2838 (2011).
[CrossRef]

S. Caorsi, A. Massa, M. Pastorino, M. Raffetto, and A. Randazzo, “Detection of buried inhomogeneous elliptic cylinders by a memetic algorithm,” IEEE Trans. Antenn. Propag. 51(10), 2878–2884 (2003).
[CrossRef]

Rao, L. Y.

R. J. He, L. Y. Rao, S. Liu, W. L. Yan, P. A. Narayana, and H. Brauer, “The method of maximum mutual information for biomedical electromagnetic inverse problems,” IEEE Trans. Magn. 36(4), 1741–1744 (2000).
[CrossRef]

Rocca, P.

M. Donelli, D. Franceschini, P. Rocca, and A. Massa, “Three-dimensional microwave imaging problems solved through an efficient multiscaling particle swarm optimization,” IEEE Trans. Geosci. Rem. Sens. 47(5), 1467–1481 (2009).
[CrossRef]

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25(12), 123003 (2009).
[CrossRef]

Rosani, A.

A. Massa, M. Pastorino, A. Rosani, and M. Benedetti, “A microwave imaging method for NDE/NDT based on the SMW technique for the electromagnetic field prediction,” IEEE Trans. Instrum. Meas. 55(1), 240–247 (2006).
[CrossRef]

Sabouroux, P.

J. M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering database continuation: experimental set-up and measurement precision,” Inverse Probl. 21(6), S117–S130 (2005).
[CrossRef]

Sarabandi, K.

M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential SAR,” IEEE Trans. Geosci. Rem. Sens. 47(5), 1289–1296 (2009).
[CrossRef]

Shen, J.

Song, J.

J. Ma, W. Chew, C. Lu, and J. Song, “Image reconstruction from TE scattering data using equation of strong permittivity fluctuation,” IEEE Trans. Antenn. Propag. 48(6), 860–867 (2000).
[CrossRef]

Song, L. P.

L. P. Song, C. Yu, and Q. H. Liu, “Through-wall imaging (TWI) by radar: 2D tomographic results and analyses,” IEEE Trans. Geosci. Rem. Sens. 43(12), 2793–2798 (2005).
[CrossRef]

Testorf, M.

Thiel, M.

M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential SAR,” IEEE Trans. Geosci. Rem. Sens. 47(5), 1289–1296 (2009).
[CrossRef]

Tinet, E.

Tualle, J. M.

van den Berg, P. M.

A. Abubakar, W. Hu, P. M. van den Berg, and T. M. Habashy, “A finite-difference contrast source inversion method,” Inverse Probl. 24(6), 065004 (2008).
[CrossRef]

Wang, G.

T. Cui, Y. Qin, Y. Ye, J. Wu, G. Wang, and W. Chew, “Efficient low-frequency inversion of 3-D buried objects with large contrasts,” IEEE Trans. Geosci. Rem. Sens. 44(1), 3–9 (2006).
[CrossRef]

Wu, J.

T. Cui, Y. Qin, Y. Ye, J. Wu, G. Wang, and W. Chew, “Efficient low-frequency inversion of 3-D buried objects with large contrasts,” IEEE Trans. Geosci. Rem. Sens. 44(1), 3–9 (2006).
[CrossRef]

Yan, W. L.

R. J. He, L. Y. Rao, S. Liu, W. L. Yan, P. A. Narayana, and H. Brauer, “The method of maximum mutual information for biomedical electromagnetic inverse problems,” IEEE Trans. Magn. 36(4), 1741–1744 (2000).
[CrossRef]

Ye, X.

X. Ye, Y. Zhong, and X. Chen, “Reconstructing perfectly electric conductors by subspace-based optimization method with continuous variables,” Inverse Probl. 27(5), 055011 (2011).
[CrossRef]

X. Ye, X. Chen, Y. Zhong, and K. Agarwal, “Subspace-based optimization method for reconstructing perfectly electric conductors,” Prog. Electromagn. Res. 100, 119–128 (2010).
[CrossRef]

Ye, Y.

T. Cui, Y. Qin, Y. Ye, J. Wu, G. Wang, and W. Chew, “Efficient low-frequency inversion of 3-D buried objects with large contrasts,” IEEE Trans. Geosci. Rem. Sens. 44(1), 3–9 (2006).
[CrossRef]

Yu, C.

L. P. Song, C. Yu, and Q. H. Liu, “Through-wall imaging (TWI) by radar: 2D tomographic results and analyses,” IEEE Trans. Geosci. Rem. Sens. 43(12), 2793–2798 (2005).
[CrossRef]

Zhang, F.

Zhong, Y.

J. Shen, X. Chen, Y. Zhong, and L. Ran, “Inverse scattering problem in presence of a conducting cylinder,” Opt. Express 19(11), 10698–10706 (2011).
[CrossRef] [PubMed]

X. Ye, Y. Zhong, and X. Chen, “Reconstructing perfectly electric conductors by subspace-based optimization method with continuous variables,” Inverse Probl. 27(5), 055011 (2011).
[CrossRef]

X. Ye, X. Chen, Y. Zhong, and K. Agarwal, “Subspace-based optimization method for reconstructing perfectly electric conductors,” Prog. Electromagn. Res. 100, 119–128 (2010).
[CrossRef]

Zhu, G.

Zhuang, L.

IEEE Microw. Guid. Wave Lett. (1)

W. Chew and J. Lin, “A frequency-hopping approach for microwave imaging of large inhomogeineous bodies,” IEEE Microw. Guid. Wave Lett. 5(12), 439–441 (1995).
[CrossRef]

IEEE Trans. Antenn. Propag. (6)

J. Ma, W. Chew, C. Lu, and J. Song, “Image reconstruction from TE scattering data using equation of strong permittivity fluctuation,” IEEE Trans. Antenn. Propag. 48(6), 860–867 (2000).
[CrossRef]

A. Y. Qing, “Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES),” IEEE Trans. Antenn. Propag. 52(5), 1223–1229 (2004).
[CrossRef]

M. Benedetti, M. Donelli, and A. Massa, “Multicrack detection in two-dimensional structures by means of GA-based strategies,” IEEE Trans. Antenn. Propag. 55(1), 205–215 (2007).
[CrossRef]

S. Caorsi, A. Massa, M. Pastorino, M. Raffetto, and A. Randazzo, “Detection of buried inhomogeneous elliptic cylinders by a memetic algorithm,” IEEE Trans. Antenn. Propag. 51(10), 2878–2884 (2003).
[CrossRef]

S. Caorsi, A. Massa, and M. Pastorino, “A crack identification microwave procedure based on a genetic algorithm for nondestructive testing,” IEEE Trans. Antenn. Propag. 49(12), 1812–1820 (2001).
[CrossRef]

S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for non-destructive evaluations of two-dimensional structures,” IEEE Trans. Antenn. Propag. 52(6), 1386–1397 (2004).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens. (7)

M. Donelli, G. Franceschini, A. Martini, and A. Massa, “An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems,” IEEE Trans. Geosci. Rem. Sens. 44(2), 298–312 (2006).
[CrossRef]

M. Donelli, D. Franceschini, P. Rocca, and A. Massa, “Three-dimensional microwave imaging problems solved through an efficient multiscaling particle swarm optimization,” IEEE Trans. Geosci. Rem. Sens. 47(5), 1467–1481 (2009).
[CrossRef]

M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential SAR,” IEEE Trans. Geosci. Rem. Sens. 47(5), 1289–1296 (2009).
[CrossRef]

L. P. Song, C. Yu, and Q. H. Liu, “Through-wall imaging (TWI) by radar: 2D tomographic results and analyses,” IEEE Trans. Geosci. Rem. Sens. 43(12), 2793–2798 (2005).
[CrossRef]

M. D’Urso, T. Isernia, and A. F. Morabito, “On the Solution of 2-D Inverse Scattering Problems via Source-Type Integral Equations,” IEEE Trans. Geosci. Rem. Sens. 48(3), 1186–1198 (2010).
[CrossRef]

R. Autieri, M. D’Urso, T. Isernia, and V. Pascazio, “Inverse Profiling via an Effective Linearized Scattering Model and MRF Regularization,” IEEE Trans. Geosci. Rem. Sens. 8(6), 1021–1025 (2011).
[CrossRef]

T. Cui, Y. Qin, Y. Ye, J. Wu, G. Wang, and W. Chew, “Efficient low-frequency inversion of 3-D buried objects with large contrasts,” IEEE Trans. Geosci. Rem. Sens. 44(1), 3–9 (2006).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

A. Massa, M. Pastorino, A. Rosani, and M. Benedetti, “A microwave imaging method for NDE/NDT based on the SMW technique for the electromagnetic field prediction,” IEEE Trans. Instrum. Meas. 55(1), 240–247 (2006).
[CrossRef]

IEEE Trans. Magn. (1)

R. J. He, L. Y. Rao, S. Liu, W. L. Yan, P. A. Narayana, and H. Brauer, “The method of maximum mutual information for biomedical electromagnetic inverse problems,” IEEE Trans. Magn. 36(4), 1741–1744 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microwave Theory Tech. 51(4), 1162–1173 (2003).
[CrossRef]

Inverse Probl. (5)

J. M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering database continuation: experimental set-up and measurement precision,” Inverse Probl. 21(6), S117–S130 (2005).
[CrossRef]

P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25(12), 123003 (2009).
[CrossRef]

X. Chen, “Subspace-based optimization method for inverse scattering problems with an inhomogeneous background medium,” Inverse Probl. 26(7), 074007 (2010).
[CrossRef]

A. Abubakar, W. Hu, P. M. van den Berg, and T. M. Habashy, “A finite-difference contrast source inversion method,” Inverse Probl. 24(6), 065004 (2008).
[CrossRef]

X. Ye, Y. Zhong, and X. Chen, “Reconstructing perfectly electric conductors by subspace-based optimization method with continuous variables,” Inverse Probl. 27(5), 055011 (2011).
[CrossRef]

J. Opt. Soc. Am. A (4)

Microw. Opt. Technol. Lett. (1)

A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact Newton method-experimental validation,” Microw. Opt. Technol. Lett. 53(12), 2834–2838 (2011).
[CrossRef]

Opt. Express (4)

Prog. Electromagn. Res. (1)

X. Ye, X. Chen, Y. Zhong, and K. Agarwal, “Subspace-based optimization method for reconstructing perfectly electric conductors,” Prog. Electromagn. Res. 100, 119–128 (2010).
[CrossRef]

Other (3)

S. M. Ali, N. K. Nikolova, and M. H. Bakr, “Non-destructive testing and evaluation utilizing frequency-domain EM modeling,” in Proceedings of the Second IASTED International Conference on Antennas, Radar, and Wave Propagation (Banff, CANADA, 2005), pp. 29–34.

W. C. Chew, Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.

J. A. Kong, Electromagnetic Wave Theory (EMW. 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A general scenario for separable obstacle problem (SOP).

Fig. 2
Fig. 2

The configuration of scatterer in the first numerical example. The scattering data are contaminated with 10% white Gaussian noise. (a) Exact profile. (b) Reconstructed profile by SOP-homo. (c)Reconstructed profile by OP-inhomo. (d) Reconstructed profile by SOP-inhomo.

Fig. 3
Fig. 3

The configuration of scatterer in the second numerical example. The scattering data are contaminated with 10% white Gaussian noise. (a) Exact profile. (b) Reconstructed profile by SOP-homo. (c)Reconstructed profile by OP-inhomo. (d) Reconstructed profile by SOP-inhomo.

Fig. 4
Fig. 4

The configuration of scatterer in the third numerical example. The scattering data are contaminated with 10% white Gaussian noise. (a) Exact profile. (b) Reconstructed profile by SOP-homo. (c)Reconstructed profile by OP-inhomo. (d) Reconstructed profile by SOP-inhomo.

Fig. 5
Fig. 5

The configuration of scatterer in the fourth numerical example. The scattering data are contaminated with 10% white Gaussian noise. (a) Exact profile. (b) Reconstructed profile by SOP-homo. (c)Reconstructed profile by OP-inhomo. (d) Reconstructed profile by SOP-inhomo.

Fig. 6
Fig. 6

The configuration of scatterer in the fifth numerical example. The scattering data are contaminated with 10% white Gaussian noise. (a) Exact profile. (b) Reconstructed profile by SOP-homo. (c) Reconstructed profile by OP-inhomo. (d) Reconstructed profile by SOP-inhomo.

Fig. 7
Fig. 7

Configuration of FoamDielIntTM

Fig. 8
Fig. 8

Single-frequency reconstruction at 2GHz using SOP-homo for FoamDielIntTM. (a) the foam cylinder is the known obstacle (b) the plastic cylinder is the known obstacle

Tables (3)

Tables Icon

Table 1 Comparison of the Model I and Model II

Tables Icon

Table 2 Relative Errors in Reconstructions of Examples 1-5

Tables Icon

Table 3 Degrees of Nonlinearity for Examples 1-5

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

[ 2 + k b 2 (r) ] E z sca (r)=[ k 2 (r) k b 2 (r)] E z tot (r),
[ 2 + k b 2 (r) ] E z inc (r)=S(r),
E z sca (r)= D g( k b ;r, r ) [ k 2 ( r ) k b 2 ( r ) ] E z tot ( r )d r ,
E z inc (r)= D g( k b ;r, r ) S( r )d r .
E z tot ( r m )= E z inc ( r m )+ im i k b η b g( k b ; r m , r i ) ξ i E z tot ( r m ),m=1,2,,N.
ξ i =i( k b / η b ) A i [ ε r ( r i )1 ],
E ¯ sca = G ¯ ¯ S I ¯ d .
I ¯ d = ξ ¯ ¯ ( E ¯ inc + G ¯ ¯ D I ¯ d ),
f( ξ ¯ ¯ )= p=1 N inc ( Δ p fie / E ¯ p sca 2 + Δ p sta / I ¯ p s 2 ) ,
Δ fie = E ¯ sca G ¯ ¯ s I ¯ d 2 .
Δ sta = I ¯ d ξ ¯ ¯ ( E ¯ inc + G ¯ ¯ D I ¯ d ) 2 .
f( ξ ¯ ¯ )= p=1 N inc ( Δ p fie E ¯ p sca 2 + i=1 N ( Δ p sta ) i I ¯ p s 2 ) .
f[ ( ξ ¯ ¯ n ) i ]= 1 2 p=1 N inc ( Δ p,n fie E ¯ p sca 2 + i=1 N w ( Δ p,n sta ) i obs I ¯ p s 2 + i=1 N N w ( Δ p,n sta ) i non-obs I ¯ p s 2 ).
e= i=1 N | ε r_true ,i ε r_rec ,i | / ε r_true,i N ,

Metrics