Abstract

We demonstrate the optical characteristics of YVO4:Eu3+ phosphor in close proximity to Ag nanofilm to create a highly efficient emitting layer in mirror-type self-emissive displays. The propagating surface plasmon mode induced between the dielectric layer (MgO) and the Ag nanofilm activates the electric dipole transition of Eu3+ ions. The transmittance of a 100 nm-thick Ag nanofilm is zero in the visible wavelength range, making this nanofilm a good reflector in the visible wavelength range and capable of fulfilling a mirror function. The emission of an YVO4:Eu3+ phosphor layer with a 100 nm-thick Ag nanofilm was enhanced to the point that it was eight times higher than that of a reference sample without Ag nanofilm. Therefore, the present work shows potential for application to mirror-type displays with high luminous efficacy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Gu, Z. Shen, P. E. Burrows, and S. R. Forrest, “Transparent flexible organic light‐emitting devices,” Adv. Mater. (Deerfield Beach Fla.) 9(9), 725–728 (1997).
    [CrossRef]
  2. P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, and T. Riedl, “Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.) 18(6), 738–741 (2006).
    [CrossRef]
  3. J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
    [CrossRef] [PubMed]
  4. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
    [CrossRef] [PubMed]
  5. G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices,” Opt. Lett. 22(3), 172–174 (1997).
    [CrossRef] [PubMed]
  6. Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and M. McCreary, “Electronic paper: Flexible active-matrix electronic ink display,” Nature 423(6936), 136 (2003).
    [CrossRef] [PubMed]
  7. S.-M. Lee, S. H. Oh, and K. C. Choi, “Highly Transparent SU-8 Photoresist Barrier Rib for a Transparent AC Plasma Display Panel,” IEEE/OSA Journal of Display Technology 7(1), 40–43 (2011).
    [CrossRef]
  8. K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
    [CrossRef] [PubMed]
  9. N. Noginova, Y. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Express 17(13), 10767–10772 (2009).
    [CrossRef] [PubMed]
  10. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
    [CrossRef]
  11. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  12. S. M. Lee, K. C. Choi, D. H. Kim, and D. Y. Jeon, “Localized surface plasmon enhanced cathodoluminescence from Eu3+-doped phosphor near the nanoscaled silver particles,” Opt. Express 19(14), 13209–13217 (2011).
    [CrossRef] [PubMed]
  13. S. M. Lee and K. C. Choi, “Enhanced emission from BaMgAl10O17:Eu2+ by localized surface plasmon resonance of silver particles,” Opt. Express 18(12), 12144–12152 (2010).
    [CrossRef] [PubMed]
  14. A. K. Levine and F. C. Palilla, “A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television,” Appl. Phys. Lett. 5(6), 118 (1964).
    [CrossRef]
  15. G. Blasse, A. Bril, and W. C. Nieuwpoort, “On the Eu3+ fluorescence in mixed metal oxides: Part I-The crystal structure sensitivity of thr intensity ratio of electric and magnetic dipole emission,” J. Phys. Chem. Solids 27(10), 1587–1592 (1966).
    [CrossRef]
  16. J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).
  17. A. F. Kirby, D. Foster, and F. S. Richardson, “Comparison of 7FJ←5DO emission spectra for Eu (III) in crystalline environments of octahedral, near-octahedral, and trigonal symmetry,” Chem. Phys. Lett. 95(6), 507–512 (1983).
    [CrossRef]
  18. C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
    [CrossRef]

2011 (2)

S.-M. Lee, S. H. Oh, and K. C. Choi, “Highly Transparent SU-8 Photoresist Barrier Rib for a Transparent AC Plasma Display Panel,” IEEE/OSA Journal of Display Technology 7(1), 40–43 (2011).
[CrossRef]

S. M. Lee, K. C. Choi, D. H. Kim, and D. Y. Jeon, “Localized surface plasmon enhanced cathodoluminescence from Eu3+-doped phosphor near the nanoscaled silver particles,” Opt. Express 19(14), 13209–13217 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (1)

2006 (1)

P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, and T. Riedl, “Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.) 18(6), 738–741 (2006).
[CrossRef]

2005 (3)

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[CrossRef] [PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).

2004 (1)

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[CrossRef] [PubMed]

2003 (2)

J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
[CrossRef] [PubMed]

Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and M. McCreary, “Electronic paper: Flexible active-matrix electronic ink display,” Nature 423(6936), 136 (2003).
[CrossRef] [PubMed]

2002 (1)

C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

1997 (2)

G. Gu, Z. Shen, P. E. Burrows, and S. R. Forrest, “Transparent flexible organic light‐emitting devices,” Adv. Mater. (Deerfield Beach Fla.) 9(9), 725–728 (1997).
[CrossRef]

G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices,” Opt. Lett. 22(3), 172–174 (1997).
[CrossRef] [PubMed]

1983 (1)

A. F. Kirby, D. Foster, and F. S. Richardson, “Comparison of 7FJ←5DO emission spectra for Eu (III) in crystalline environments of octahedral, near-octahedral, and trigonal symmetry,” Chem. Phys. Lett. 95(6), 507–512 (1983).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1966 (1)

G. Blasse, A. Bril, and W. C. Nieuwpoort, “On the Eu3+ fluorescence in mixed metal oxides: Part I-The crystal structure sensitivity of thr intensity ratio of electric and magnetic dipole emission,” J. Phys. Chem. Solids 27(10), 1587–1592 (1966).
[CrossRef]

1964 (1)

A. K. Levine and F. C. Palilla, “A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television,” Appl. Phys. Lett. 5(6), 118 (1964).
[CrossRef]

Aslan, K.

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[CrossRef] [PubMed]

Au, J.

Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and M. McCreary, “Electronic paper: Flexible active-matrix electronic ink display,” Nature 423(6936), 136 (2003).
[CrossRef] [PubMed]

Barnakov, Y.

Becker, E.

P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, and T. Riedl, “Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.) 18(6), 738–741 (2006).
[CrossRef]

Blasse, G.

G. Blasse, A. Bril, and W. C. Nieuwpoort, “On the Eu3+ fluorescence in mixed metal oxides: Part I-The crystal structure sensitivity of thr intensity ratio of electric and magnetic dipole emission,” J. Phys. Chem. Solids 27(10), 1587–1592 (1966).
[CrossRef]

Bril, A.

G. Blasse, A. Bril, and W. C. Nieuwpoort, “On the Eu3+ fluorescence in mixed metal oxides: Part I-The crystal structure sensitivity of thr intensity ratio of electric and magnetic dipole emission,” J. Phys. Chem. Solids 27(10), 1587–1592 (1966).
[CrossRef]

Burrows, P. E.

G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices,” Opt. Lett. 22(3), 172–174 (1997).
[CrossRef] [PubMed]

G. Gu, Z. Shen, P. E. Burrows, and S. R. Forrest, “Transparent flexible organic light‐emitting devices,” Adv. Mater. (Deerfield Beach Fla.) 9(9), 725–728 (1997).
[CrossRef]

Chen, Y.

Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and M. McCreary, “Electronic paper: Flexible active-matrix electronic ink display,” Nature 423(6936), 136 (2003).
[CrossRef] [PubMed]

Choi, K. C.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Forrest, S. R.

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[CrossRef] [PubMed]

G. Gu, Z. Shen, P. E. Burrows, and S. R. Forrest, “Transparent flexible organic light‐emitting devices,” Adv. Mater. (Deerfield Beach Fla.) 9(9), 725–728 (1997).
[CrossRef]

G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices,” Opt. Lett. 22(3), 172–174 (1997).
[CrossRef] [PubMed]

Foster, D.

A. F. Kirby, D. Foster, and F. S. Richardson, “Comparison of 7FJ←5DO emission spectra for Eu (III) in crystalline environments of octahedral, near-octahedral, and trigonal symmetry,” Chem. Phys. Lett. 95(6), 507–512 (1983).
[CrossRef]

Gates, H.

Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and M. McCreary, “Electronic paper: Flexible active-matrix electronic ink display,” Nature 423(6936), 136 (2003).
[CrossRef] [PubMed]

Geddes, C. D.

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[CrossRef] [PubMed]

C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

Görrn, P.

P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, and T. Riedl, “Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.) 18(6), 738–741 (2006).
[CrossRef]

Gu, G.

G. Gu, Z. Shen, P. E. Burrows, and S. R. Forrest, “Transparent flexible organic light‐emitting devices,” Adv. Mater. (Deerfield Beach Fla.) 9(9), 725–728 (1997).
[CrossRef]

G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices,” Opt. Lett. 22(3), 172–174 (1997).
[CrossRef] [PubMed]

Im, W. B.

J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).

Jeon, D. Y.

S. M. Lee, K. C. Choi, D. H. Kim, and D. Y. Jeon, “Localized surface plasmon enhanced cathodoluminescence from Eu3+-doped phosphor near the nanoscaled silver particles,” Opt. Express 19(14), 13209–13217 (2011).
[CrossRef] [PubMed]

J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).

Johannes, H. H.

P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, and T. Riedl, “Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.) 18(6), 738–741 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kang, J. H.

J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).

Kazlas, P.

Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and M. McCreary, “Electronic paper: Flexible active-matrix electronic ink display,” Nature 423(6936), 136 (2003).
[CrossRef] [PubMed]

Kim, D. H.

Kim, J. Y.

J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).

Kirby, A. F.

A. F. Kirby, D. Foster, and F. S. Richardson, “Comparison of 7FJ←5DO emission spectra for Eu (III) in crystalline environments of octahedral, near-octahedral, and trigonal symmetry,” Chem. Phys. Lett. 95(6), 507–512 (1983).
[CrossRef]

Kowalsky, W.

P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, and T. Riedl, “Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.) 18(6), 738–741 (2006).
[CrossRef]

Kröger, M.

P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, and T. Riedl, “Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.) 18(6), 738–741 (2006).
[CrossRef]

Lakowicz, J. R.

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[CrossRef] [PubMed]

C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

Lee, S. M.

Lee, S.-M.

S.-M. Lee, S. H. Oh, and K. C. Choi, “Highly Transparent SU-8 Photoresist Barrier Rib for a Transparent AC Plasma Display Panel,” IEEE/OSA Journal of Display Technology 7(1), 40–43 (2011).
[CrossRef]

Leonenko, Z.

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[CrossRef] [PubMed]

Levine, A. K.

A. K. Levine and F. C. Palilla, “A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television,” Appl. Phys. Lett. 5(6), 118 (1964).
[CrossRef]

Li, H.

McCreary, M.

Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and M. McCreary, “Electronic paper: Flexible active-matrix electronic ink display,” Nature 423(6936), 136 (2003).
[CrossRef] [PubMed]

Meyer, J.

P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, and T. Riedl, “Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.) 18(6), 738–741 (2006).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

Nazarov, M.

J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).

Nieuwpoort, W. C.

G. Blasse, A. Bril, and W. C. Nieuwpoort, “On the Eu3+ fluorescence in mixed metal oxides: Part I-The crystal structure sensitivity of thr intensity ratio of electric and magnetic dipole emission,” J. Phys. Chem. Solids 27(10), 1587–1592 (1966).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

Noginov, M. A.

Noginova, N.

Oh, S. H.

S.-M. Lee, S. H. Oh, and K. C. Choi, “Highly Transparent SU-8 Photoresist Barrier Rib for a Transparent AC Plasma Display Panel,” IEEE/OSA Journal of Display Technology 7(1), 40–43 (2011).
[CrossRef]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

Palilla, F. C.

A. K. Levine and F. C. Palilla, “A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television,” Appl. Phys. Lett. 5(6), 118 (1964).
[CrossRef]

Richardson, F. S.

A. F. Kirby, D. Foster, and F. S. Richardson, “Comparison of 7FJ←5DO emission spectra for Eu (III) in crystalline environments of octahedral, near-octahedral, and trigonal symmetry,” Chem. Phys. Lett. 95(6), 507–512 (1983).
[CrossRef]

Riedl, T.

P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, and T. Riedl, “Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.) 18(6), 738–741 (2006).
[CrossRef]

Ritenour, A.

Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and M. McCreary, “Electronic paper: Flexible active-matrix electronic ink display,” Nature 423(6936), 136 (2003).
[CrossRef] [PubMed]

Sander, M.

P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, and T. Riedl, “Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.) 18(6), 738–741 (2006).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

Shen, Z.

G. Gu, Z. Shen, P. E. Burrows, and S. R. Forrest, “Transparent flexible organic light‐emitting devices,” Adv. Mater. (Deerfield Beach Fla.) 9(9), 725–728 (1997).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

Thompson, M. E.

Venkatesh, S.

Wager, J. F.

J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

G. Gu, Z. Shen, P. E. Burrows, and S. R. Forrest, “Transparent flexible organic light‐emitting devices,” Adv. Mater. (Deerfield Beach Fla.) 9(9), 725–728 (1997).
[CrossRef]

P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, and T. Riedl, “Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.) 18(6), 738–741 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

A. K. Levine and F. C. Palilla, “A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television,” Appl. Phys. Lett. 5(6), 118 (1964).
[CrossRef]

Chem. Phys. Lett. (1)

A. F. Kirby, D. Foster, and F. S. Richardson, “Comparison of 7FJ←5DO emission spectra for Eu (III) in crystalline environments of octahedral, near-octahedral, and trigonal symmetry,” Chem. Phys. Lett. 95(6), 507–512 (1983).
[CrossRef]

IEEE/OSA Journal of Display Technology (1)

S.-M. Lee, S. H. Oh, and K. C. Choi, “Highly Transparent SU-8 Photoresist Barrier Rib for a Transparent AC Plasma Display Panel,” IEEE/OSA Journal of Display Technology 7(1), 40–43 (2011).
[CrossRef]

J. Fluoresc. (2)

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[CrossRef] [PubMed]

C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

J. Phys. Chem. Solids (1)

G. Blasse, A. Bril, and W. C. Nieuwpoort, “On the Eu3+ fluorescence in mixed metal oxides: Part I-The crystal structure sensitivity of thr intensity ratio of electric and magnetic dipole emission,” J. Phys. Chem. Solids 27(10), 1587–1592 (1966).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).

Nature (2)

Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and M. McCreary, “Electronic paper: Flexible active-matrix electronic ink display,” Nature 423(6936), 136 (2003).
[CrossRef] [PubMed]

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Status Solidi (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

Science (1)

J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Graphical representation of the emitting layer with a localized surface plasmonic structure containing Ag nano-films, (b) SEM images of Ag nanofilm deposited on the ITO-coated glass; the scale bar is 200 nm. (c) Transmittance of fully fabricated structures in a visible range, (d) energy dispersion curve versus the K vector of Ag films and Au films in various dielectric mediums; dielectric mediums are examined by MgO and SiO2.

Fig. 2
Fig. 2

(a) Photoluminescence intensity from the emitting layer with the propagating surface plasmonic structure incorporating Ag nanofilms, (b) enhancement factor calculated by dividing the integrated intensity of the sample with Ag films by that of the reference sample without Ag film

Fig. 3
Fig. 3

(a) Decay time measurement of the emitting layer in close proximity to Ag nanofilm. For clarity, the decay curves are plotted using the logarithm (base 10). (b) Decay time estimated until the initial intensity decreased below a level of 1/10.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q 0 = Γ Γ+ k nr , τ 0 = 1 Γ+ k nr .
Q m = Γ+ Γ m Γ+ Γ m + k nr , τ m = 1 Γ+ Γ m + k nr .

Metrics