Abstract

A polarization mode dispersion (PMD) measurement of a commercial telecommunication wavelength selective switch (WSS) using a quantum interferometric technique with polarization-entangled states is presented. Polarization-entangled photons with a broad spectral width covering the telecom band are produced using a chirped periodically poled nonlinear crystal. The first demonstration of a quantum metrology application using an industrial commercial device shows a promising future for practical high-resolution quantum interference.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 18, 2044–2046 (1987).
    [CrossRef]
  2. A. V. Sergienko, Y. H. Shih, and M. H. Rubin, “Experimental evaluation of a two-photon wave packet in type-II parametric downconversion,” J. Opt. Soc. Am. B 12, 859–862 (1995).
    [CrossRef]
  3. D. Branning, A. L. Migdall, and A. V. Sergienko, “Simultaneous measurement of group and phase delay between two photons,” Phys. Rev. A 62, 063808 (2000).
    [CrossRef]
  4. E. Dauler, G. Jaeger, A. Muller, A. L. Migdall, and A. V. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104, 1–10 (1999).
  5. A. Fraine, D. S. Simon, O. Minaeva, R. Egorov, and A. V. Sergienko, “Precise evaluation of polarization mode dispersion by separation of even- and odd-order effects in quantum interferometry,” Opt. Express 19, 22820–22836 (2011).
    [CrossRef] [PubMed]
  6. S. Diddams and J. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13, 1120–1129 (1996).
    [CrossRef]
  7. Y. Namihira, K. Nakajima, and T. Kawazawa, “Fully automated interferometric PMD measurements for active EDFA, fibre optic components and optical fibres,” Electron. Lett. 29, 1649–1651 (1993).
    [CrossRef]
  8. B. L. Heffner, “Accurate, automated measurement of differential group delay dispersion and principal state variation using jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 5, 814–817(1993).
    [CrossRef]
  9. P. Williams, “PMD measurement techniques and how to avoid the pitfalls,” J. Opt. Fiber Commun. Rep. 1, 84–105 (2004).
    [CrossRef]
  10. P. G. Kwiat, K. Mattle, H. Weintfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [CrossRef] [PubMed]
  11. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (2008).
    [CrossRef]
  12. M. Nasr, S. Carrasco, B. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. Hum, and M. M Fejer, “Ultrabroadband biophotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2005).
    [CrossRef]
  13. S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomography by aperiodic quasi-phase-matching,” Opt. Lett. 29, 2429–2431 (2004).
    [CrossRef] [PubMed]
  14. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
    [CrossRef] [PubMed]
  15. Capella Intelligent Subsystems Inc., “Capella CR50,” http://www.capellainc.com/products/CR50/index.htm .
  16. G. N. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
    [CrossRef]
  17. S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42, 6661–6665 (2003).
    [CrossRef] [PubMed]

2011 (1)

2008 (1)

2005 (1)

M. Nasr, S. Carrasco, B. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. Hum, and M. M Fejer, “Ultrabroadband biophotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2005).
[CrossRef]

2004 (2)

2003 (1)

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

2000 (1)

D. Branning, A. L. Migdall, and A. V. Sergienko, “Simultaneous measurement of group and phase delay between two photons,” Phys. Rev. A 62, 063808 (2000).
[CrossRef]

1999 (1)

E. Dauler, G. Jaeger, A. Muller, A. L. Migdall, and A. V. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104, 1–10 (1999).

1996 (1)

1995 (2)

A. V. Sergienko, Y. H. Shih, and M. H. Rubin, “Experimental evaluation of a two-photon wave packet in type-II parametric downconversion,” J. Opt. Soc. Am. B 12, 859–862 (1995).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weintfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

1994 (1)

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[CrossRef] [PubMed]

1993 (2)

Y. Namihira, K. Nakajima, and T. Kawazawa, “Fully automated interferometric PMD measurements for active EDFA, fibre optic components and optical fibres,” Electron. Lett. 29, 1649–1651 (1993).
[CrossRef]

B. L. Heffner, “Accurate, automated measurement of differential group delay dispersion and principal state variation using jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 5, 814–817(1993).
[CrossRef]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 18, 2044–2046 (1987).
[CrossRef]

Afeyan, B.

Arie, A.

Branning, D.

D. Branning, A. L. Migdall, and A. V. Sergienko, “Simultaneous measurement of group and phase delay between two photons,” Phys. Rev. A 62, 063808 (2000).
[CrossRef]

Carrasco, S.

M. Nasr, S. Carrasco, B. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. Hum, and M. M Fejer, “Ultrabroadband biophotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2005).
[CrossRef]

S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomography by aperiodic quasi-phase-matching,” Opt. Lett. 29, 2429–2431 (2004).
[CrossRef] [PubMed]

Charbonneau-Lefort, M.

Chulova, G.

G. N. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Dauler, E.

E. Dauler, G. Jaeger, A. Muller, A. L. Migdall, and A. V. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104, 1–10 (1999).

Diddams, S.

Diels, J.

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Egorov, R.

Emanueli, S.

Fejer, M. M

M. Nasr, S. Carrasco, B. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. Hum, and M. M Fejer, “Ultrabroadband biophotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2005).
[CrossRef]

Fejer, M. M.

Fraine, A.

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Heffner, B. L.

B. L. Heffner, “Accurate, automated measurement of differential group delay dispersion and principal state variation using jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 5, 814–817(1993).
[CrossRef]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 18, 2044–2046 (1987).
[CrossRef]

Hum, D.

M. Nasr, S. Carrasco, B. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. Hum, and M. M Fejer, “Ultrabroadband biophotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2005).
[CrossRef]

Jaeger, G.

E. Dauler, G. Jaeger, A. Muller, A. L. Migdall, and A. V. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104, 1–10 (1999).

Kawazawa, T.

Y. Namihira, K. Nakajima, and T. Kawazawa, “Fully automated interferometric PMD measurements for active EDFA, fibre optic components and optical fibres,” Electron. Lett. 29, 1649–1651 (1993).
[CrossRef]

Klyshko, D. N.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[CrossRef] [PubMed]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weintfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 18, 2044–2046 (1987).
[CrossRef]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weintfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Migdall, A. L.

D. Branning, A. L. Migdall, and A. V. Sergienko, “Simultaneous measurement of group and phase delay between two photons,” Phys. Rev. A 62, 063808 (2000).
[CrossRef]

E. Dauler, G. Jaeger, A. Muller, A. L. Migdall, and A. V. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104, 1–10 (1999).

Minaeva, O.

Muller, A.

E. Dauler, G. Jaeger, A. Muller, A. L. Migdall, and A. V. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104, 1–10 (1999).

Nakajima, K.

Y. Namihira, K. Nakajima, and T. Kawazawa, “Fully automated interferometric PMD measurements for active EDFA, fibre optic components and optical fibres,” Electron. Lett. 29, 1649–1651 (1993).
[CrossRef]

Namihira, Y.

Y. Namihira, K. Nakajima, and T. Kawazawa, “Fully automated interferometric PMD measurements for active EDFA, fibre optic components and optical fibres,” Electron. Lett. 29, 1649–1651 (1993).
[CrossRef]

Nasr, M.

M. Nasr, S. Carrasco, B. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. Hum, and M. M Fejer, “Ultrabroadband biophotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2005).
[CrossRef]

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 18, 2044–2046 (1987).
[CrossRef]

Rubin, M. H.

A. V. Sergienko, Y. H. Shih, and M. H. Rubin, “Experimental evaluation of a two-photon wave packet in type-II parametric downconversion,” J. Opt. Soc. Am. B 12, 859–862 (1995).
[CrossRef]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[CrossRef] [PubMed]

Saleh, B.

M. Nasr, S. Carrasco, B. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. Hum, and M. M Fejer, “Ultrabroadband biophotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2005).
[CrossRef]

S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomography by aperiodic quasi-phase-matching,” Opt. Lett. 29, 2429–2431 (2004).
[CrossRef] [PubMed]

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Sergienko, A. V.

A. Fraine, D. S. Simon, O. Minaeva, R. Egorov, and A. V. Sergienko, “Precise evaluation of polarization mode dispersion by separation of even- and odd-order effects in quantum interferometry,” Opt. Express 19, 22820–22836 (2011).
[CrossRef] [PubMed]

M. Nasr, S. Carrasco, B. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. Hum, and M. M Fejer, “Ultrabroadband biophotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2005).
[CrossRef]

S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomography by aperiodic quasi-phase-matching,” Opt. Lett. 29, 2429–2431 (2004).
[CrossRef] [PubMed]

D. Branning, A. L. Migdall, and A. V. Sergienko, “Simultaneous measurement of group and phase delay between two photons,” Phys. Rev. A 62, 063808 (2000).
[CrossRef]

E. Dauler, G. Jaeger, A. Muller, A. L. Migdall, and A. V. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104, 1–10 (1999).

A. V. Sergienko, Y. H. Shih, and M. H. Rubin, “Experimental evaluation of a two-photon wave packet in type-II parametric downconversion,” J. Opt. Soc. Am. B 12, 859–862 (1995).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weintfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[CrossRef] [PubMed]

Shih, Y. H.

P. G. Kwiat, K. Mattle, H. Weintfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

A. V. Sergienko, Y. H. Shih, and M. H. Rubin, “Experimental evaluation of a two-photon wave packet in type-II parametric downconversion,” J. Opt. Soc. Am. B 12, 859–862 (1995).
[CrossRef]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[CrossRef] [PubMed]

Simon, D. S.

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Teich, M. C.

M. Nasr, S. Carrasco, B. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. Hum, and M. M Fejer, “Ultrabroadband biophotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2005).
[CrossRef]

S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomography by aperiodic quasi-phase-matching,” Opt. Lett. 29, 2429–2431 (2004).
[CrossRef] [PubMed]

Torner, L.

M. Nasr, S. Carrasco, B. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. Hum, and M. M Fejer, “Ultrabroadband biophotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2005).
[CrossRef]

S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomography by aperiodic quasi-phase-matching,” Opt. Lett. 29, 2429–2431 (2004).
[CrossRef] [PubMed]

Torres, J. P.

M. Nasr, S. Carrasco, B. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. Hum, and M. M Fejer, “Ultrabroadband biophotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2005).
[CrossRef]

S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. Saleh, and M. C. Teich, “Enhancing the axial resolution of quantum optical coherence tomography by aperiodic quasi-phase-matching,” Opt. Lett. 29, 2429–2431 (2004).
[CrossRef] [PubMed]

Voronov, B.

G. N. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Weintfurter, H.

P. G. Kwiat, K. Mattle, H. Weintfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Williams, P.

P. Williams, “PMD measurement techniques and how to avoid the pitfalls,” J. Opt. Fiber Commun. Rep. 1, 84–105 (2004).
[CrossRef]

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weintfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. N. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Electron. Lett. (1)

Y. Namihira, K. Nakajima, and T. Kawazawa, “Fully automated interferometric PMD measurements for active EDFA, fibre optic components and optical fibres,” Electron. Lett. 29, 1649–1651 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. L. Heffner, “Accurate, automated measurement of differential group delay dispersion and principal state variation using jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 5, 814–817(1993).
[CrossRef]

J. Opt. Fiber Commun. (1)

P. Williams, “PMD measurement techniques and how to avoid the pitfalls,” J. Opt. Fiber Commun. Rep. 1, 84–105 (2004).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Res. Natl. Inst. Stand. Technol. (1)

E. Dauler, G. Jaeger, A. Muller, A. L. Migdall, and A. V. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104, 1–10 (1999).

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[CrossRef] [PubMed]

D. Branning, A. L. Migdall, and A. V. Sergienko, “Simultaneous measurement of group and phase delay between two photons,” Phys. Rev. A 62, 063808 (2000).
[CrossRef]

Phys. Rev. Lett. (3)

P. G. Kwiat, K. Mattle, H. Weintfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

M. Nasr, S. Carrasco, B. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. Hum, and M. M Fejer, “Ultrabroadband biophotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2005).
[CrossRef]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 18, 2044–2046 (1987).
[CrossRef]

Other (1)

Capella Intelligent Subsystems Inc., “Capella CR50,” http://www.capellainc.com/products/CR50/index.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Linearly chirped nonlinear crystal.

Fig. 2
Fig. 2

Setup for PMD measurement. Radiation from a Ti:Sapphire laser at 775nm pumps a linearly chirped PPKTP crystal to produce broadband type-II SPDC. The photon pairs propagate through a birefringent compensating element and enter a non-polarizing beam splitter. One arm contains the sample under test and the other contains a birefringent delay line. The photons are collected after traveling through crossed polarizers at ±45° and detected in coincidence with two superconducting single photon detectors.

Fig. 3
Fig. 3

Comparison of interferograms (red circles) before (a,c) and after (b,d) the sample is introduced yields the differential group delay. (a,b) Calibration of the measurement device with a known sample producing a shift of Δτ = 7.30±0.80 fs agreeing closely with the expected value of Δτ = 7.31 ± 0.01fs. The differential group delay of the WSS is obtained from comparing c.) and d.). The Gaussian fits (bue lines) have goodness of fit parameters of R(2) = 0.975 and R(2) = 0.959 respectively.

Fig. 4
Fig. 4

Classical polarization interferometer. A classical “white light” source of the same spectral bandwidth is constructed by selecting only one horizontal component of the SPDC source. It is introduced into a polarization Mach-Zehnder interferometer. A projection onto the 45° basis is formed with a first polarizer and sent through the delay line (DL) aligned with the 0°/90° basis followed by the sample (WSS). The delay line and the sample decompose the 45° polarized light which is then recombined on a second −45° polarizer where the interference can occur. The signal is then coupled and sent to a single SSPD detector where the intensity is recorded as a function of the birefringent delay.

Fig. 5
Fig. 5

The analogous measurements to those shown in Fig. 3 with the classical interferometer of Fig. 4. The known calibration birefringent sample revealed a PMD of Δτ = 7.80 ± 1.31 fs (a,b). The measurement of the WSS, obscured by weak scattering (<1 pW) from an internal light source entering the output fibers, revealed a PMD of Δτ = 14.83 ± 7.73 fs displayed in (c,d) with background correction. The goodness of fit parameters for (c) and (d) are R(2) = 0.989 and R(2) = 0.930 respectively for the fitting function described in Section 3.

Fig. 6
Fig. 6

Comparison of quantum (a) and classical (b) interferograms through the WSS before background correction. It is clear that quantum interferometry has an extra benefit of correlated detection that provides a measurement immune to reasonable levels of uncorrelated noise in the system.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

χ ˜ ( 2 ) ( ω s , ω p ω s ) = χ 0 j = 1 N ( 1 ) j L j sinc ( L j Δ k / 2 ) e i Δ k ( L j / 2 + k = j + 1 N L k )
| Ψ = d ω χ ˜ ( 2 ) ( ω , ω p ω ) a ^ H ( ω ) a ^ V ( ω p ω ) | 0 .
R 0 = d ω | χ ˜ ( 2 ) ( ω , ω p ω ) | 2
R int ( L b ) = d ω χ ˜ ( 2 ) ( ω , ω p ω ) χ ˜ ( 2 ) * ( ω p ω , ω ) × [ e i ( Δ n b ( ω ) ω L b / c + Δ k s ( ω ) L s ) + e i ( Δ n b ( ω p ω ) ( ω p ω ) L b / c + Δ k s ( ω p ω ) L s ) ]

Metrics