Abstract

We propose and demonstrate an efficient energy-saving scheme incorporating dozing and sleep modes for WDM-PONs with centralized light sources (CLS). The novel scheme is based on simple power detection and local transmission request. Two logic control units are designed to switch the operation modes of the respective ONUs and their associated transceivers in the OLT. The scheme feasibility is experimentally verified with 10Gbit/s downstream and 1.25Gbit/s upstream transmissions. The simulation results reveal that the energy-saving of the ONUs in the online state mainly arises from the dozing mode, not from the sleep mode, while the energy-saving of the associated transceivers in the OLT is contributed mainly from the situation where ONUs are in the offline state.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Xu, Y. J. Wen, W.-D. Zhong, M. Attygalle, X. Cheng, Y. Wang, T. H. Cheng, and C. Lu, “WDM-PON architectures with a single shared interferometer filter for carrier-reuse upstream transmission,” IEEE J. Lightwave Technol.25(12), 3669–3677 (2007).
    [CrossRef]
  2. E. Wong, K. Lee, and T. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” IEEE J. Lightwave Technol.25(1), 67–74 (2007).
    [CrossRef]
  3. N. Deng, C. K. Chan, L. K. Chen, and F. Tong, “Data re-modulation on downstream OFSK signal for upstream transmission in WDM passive optical network,” Electron. Lett.39(24), 1741–1743 (2003).
    [CrossRef]
  4. Z. Xu, Y. J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007).
    [CrossRef] [PubMed]
  5. J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett.17(1), 250–252 (2005).
    [CrossRef]
  6. T. Uchikata and A. Tajima, “A novel power saving scheme for WDM-PON with centralized light sources,” in Proc. Opto-Electronics and Communications Conference (OECC) 2009, Hong Kong, China.
  7. W. Jia, D. Shen, K. H. Tse, J. Xu, M. Li, and C. K. Chan, “A novel scheme to realize a power-efficient WDM passive optical network,” in Proc. Opto-Electronics and Communications Conference (OECC) 2010, Japan.
  8. K. H. Tse, W. Jia, and C. K. Chan, “A cost-effective pilot-tone-based monitoring technique for power saving in RSOA-based WDM-PON,” OSA OFC/NFOEC 2011, Paper OThB6, Los Angeles, CA, 2011.
  9. L. Yi, Z. Li, Y. Dong, S. Xiao, J. Chen, and W. Hu, “Upstream capacity upgrade in TDM-PON using RSOA based tunable fiber ring laser,” Opt. Express20(9), 10416–10425 (2012).
    [CrossRef] [PubMed]
  10. OASE project “Requirements for European next-generation optical access networks,” Deliverable 2.1 (Project ref. No. IST-7th FP-249025).
  11. A. R. Dhaini, P.-H. Ho, and G. Shen, “Toward Green Next-Generation Passive Optical Networks,” IEEE Commun. Mag.49(11), 94–101 (2011).
    [CrossRef]
  12. G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A Dynamic Protocol for an Ethernet PON (EPON),” IEEE Commun. Mag.40(2), 74–80 (2002).
    [CrossRef]
  13. G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved Polling with Adaptive Cycle Time (IPACT): A Dynamic Bandwidth Distribution Scheme in an Optical Access Network,” Photonic Netw. Commun.4(1), 89–107 (2002).
    [CrossRef]

2012 (1)

2011 (1)

A. R. Dhaini, P.-H. Ho, and G. Shen, “Toward Green Next-Generation Passive Optical Networks,” IEEE Commun. Mag.49(11), 94–101 (2011).
[CrossRef]

2007 (3)

Z. Xu, Y. J. Wen, W.-D. Zhong, M. Attygalle, X. Cheng, Y. Wang, T. H. Cheng, and C. Lu, “WDM-PON architectures with a single shared interferometer filter for carrier-reuse upstream transmission,” IEEE J. Lightwave Technol.25(12), 3669–3677 (2007).
[CrossRef]

E. Wong, K. Lee, and T. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” IEEE J. Lightwave Technol.25(1), 67–74 (2007).
[CrossRef]

Z. Xu, Y. J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007).
[CrossRef] [PubMed]

2005 (1)

J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett.17(1), 250–252 (2005).
[CrossRef]

2003 (1)

N. Deng, C. K. Chan, L. K. Chen, and F. Tong, “Data re-modulation on downstream OFSK signal for upstream transmission in WDM passive optical network,” Electron. Lett.39(24), 1741–1743 (2003).
[CrossRef]

2002 (2)

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A Dynamic Protocol for an Ethernet PON (EPON),” IEEE Commun. Mag.40(2), 74–80 (2002).
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved Polling with Adaptive Cycle Time (IPACT): A Dynamic Bandwidth Distribution Scheme in an Optical Access Network,” Photonic Netw. Commun.4(1), 89–107 (2002).
[CrossRef]

Anderson, T.

E. Wong, K. Lee, and T. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” IEEE J. Lightwave Technol.25(1), 67–74 (2007).
[CrossRef]

Arellano, C.

J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett.17(1), 250–252 (2005).
[CrossRef]

Attygalle, M.

Z. Xu, Y. J. Wen, W.-D. Zhong, M. Attygalle, X. Cheng, Y. Wang, T. H. Cheng, and C. Lu, “WDM-PON architectures with a single shared interferometer filter for carrier-reuse upstream transmission,” IEEE J. Lightwave Technol.25(12), 3669–3677 (2007).
[CrossRef]

Bock, C.

J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett.17(1), 250–252 (2005).
[CrossRef]

Chae, C.-J.

Chan, C. K.

N. Deng, C. K. Chan, L. K. Chen, and F. Tong, “Data re-modulation on downstream OFSK signal for upstream transmission in WDM passive optical network,” Electron. Lett.39(24), 1741–1743 (2003).
[CrossRef]

Chen, J.

Chen, L. K.

N. Deng, C. K. Chan, L. K. Chen, and F. Tong, “Data re-modulation on downstream OFSK signal for upstream transmission in WDM passive optical network,” Electron. Lett.39(24), 1741–1743 (2003).
[CrossRef]

Cheng, T. H.

Z. Xu, Y. J. Wen, W.-D. Zhong, M. Attygalle, X. Cheng, Y. Wang, T. H. Cheng, and C. Lu, “WDM-PON architectures with a single shared interferometer filter for carrier-reuse upstream transmission,” IEEE J. Lightwave Technol.25(12), 3669–3677 (2007).
[CrossRef]

Cheng, X.

Z. Xu, Y. J. Wen, W.-D. Zhong, M. Attygalle, X. Cheng, Y. Wang, T. H. Cheng, and C. Lu, “WDM-PON architectures with a single shared interferometer filter for carrier-reuse upstream transmission,” IEEE J. Lightwave Technol.25(12), 3669–3677 (2007).
[CrossRef]

Cheng, X.-F.

Deng, N.

N. Deng, C. K. Chan, L. K. Chen, and F. Tong, “Data re-modulation on downstream OFSK signal for upstream transmission in WDM passive optical network,” Electron. Lett.39(24), 1741–1743 (2003).
[CrossRef]

Dhaini, A. R.

A. R. Dhaini, P.-H. Ho, and G. Shen, “Toward Green Next-Generation Passive Optical Networks,” IEEE Commun. Mag.49(11), 94–101 (2011).
[CrossRef]

Dong, Y.

Ho, P.-H.

A. R. Dhaini, P.-H. Ho, and G. Shen, “Toward Green Next-Generation Passive Optical Networks,” IEEE Commun. Mag.49(11), 94–101 (2011).
[CrossRef]

Hu, W.

Kramer, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A Dynamic Protocol for an Ethernet PON (EPON),” IEEE Commun. Mag.40(2), 74–80 (2002).
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved Polling with Adaptive Cycle Time (IPACT): A Dynamic Bandwidth Distribution Scheme in an Optical Access Network,” Photonic Netw. Commun.4(1), 89–107 (2002).
[CrossRef]

Lee, K.

E. Wong, K. Lee, and T. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” IEEE J. Lightwave Technol.25(1), 67–74 (2007).
[CrossRef]

Li, Z.

Lu, C.

Z. Xu, Y. J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007).
[CrossRef] [PubMed]

Z. Xu, Y. J. Wen, W.-D. Zhong, M. Attygalle, X. Cheng, Y. Wang, T. H. Cheng, and C. Lu, “WDM-PON architectures with a single shared interferometer filter for carrier-reuse upstream transmission,” IEEE J. Lightwave Technol.25(12), 3669–3677 (2007).
[CrossRef]

Mukherjee, B.

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved Polling with Adaptive Cycle Time (IPACT): A Dynamic Bandwidth Distribution Scheme in an Optical Access Network,” Photonic Netw. Commun.4(1), 89–107 (2002).
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A Dynamic Protocol for an Ethernet PON (EPON),” IEEE Commun. Mag.40(2), 74–80 (2002).
[CrossRef]

Pesavento, G.

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A Dynamic Protocol for an Ethernet PON (EPON),” IEEE Commun. Mag.40(2), 74–80 (2002).
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved Polling with Adaptive Cycle Time (IPACT): A Dynamic Bandwidth Distribution Scheme in an Optical Access Network,” Photonic Netw. Commun.4(1), 89–107 (2002).
[CrossRef]

Polo, V.

J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett.17(1), 250–252 (2005).
[CrossRef]

Prat, J.

J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett.17(1), 250–252 (2005).
[CrossRef]

Shankar, J.

Shen, G.

A. R. Dhaini, P.-H. Ho, and G. Shen, “Toward Green Next-Generation Passive Optical Networks,” IEEE Commun. Mag.49(11), 94–101 (2011).
[CrossRef]

Tong, F.

N. Deng, C. K. Chan, L. K. Chen, and F. Tong, “Data re-modulation on downstream OFSK signal for upstream transmission in WDM passive optical network,” Electron. Lett.39(24), 1741–1743 (2003).
[CrossRef]

Wang, Y.

Z. Xu, Y. J. Wen, W.-D. Zhong, M. Attygalle, X. Cheng, Y. Wang, T. H. Cheng, and C. Lu, “WDM-PON architectures with a single shared interferometer filter for carrier-reuse upstream transmission,” IEEE J. Lightwave Technol.25(12), 3669–3677 (2007).
[CrossRef]

Z. Xu, Y. J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007).
[CrossRef] [PubMed]

Wen, Y. J.

Z. Xu, Y. J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007).
[CrossRef] [PubMed]

Z. Xu, Y. J. Wen, W.-D. Zhong, M. Attygalle, X. Cheng, Y. Wang, T. H. Cheng, and C. Lu, “WDM-PON architectures with a single shared interferometer filter for carrier-reuse upstream transmission,” IEEE J. Lightwave Technol.25(12), 3669–3677 (2007).
[CrossRef]

Wong, E.

E. Wong, K. Lee, and T. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” IEEE J. Lightwave Technol.25(1), 67–74 (2007).
[CrossRef]

Xiao, S.

Xu, Z.

Z. Xu, Y. J. Wen, W.-D. Zhong, M. Attygalle, X. Cheng, Y. Wang, T. H. Cheng, and C. Lu, “WDM-PON architectures with a single shared interferometer filter for carrier-reuse upstream transmission,” IEEE J. Lightwave Technol.25(12), 3669–3677 (2007).
[CrossRef]

Z. Xu, Y. J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007).
[CrossRef] [PubMed]

Yi, L.

Zhong, W.-D.

Z. Xu, Y. J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007).
[CrossRef] [PubMed]

Z. Xu, Y. J. Wen, W.-D. Zhong, M. Attygalle, X. Cheng, Y. Wang, T. H. Cheng, and C. Lu, “WDM-PON architectures with a single shared interferometer filter for carrier-reuse upstream transmission,” IEEE J. Lightwave Technol.25(12), 3669–3677 (2007).
[CrossRef]

Electron. Lett. (1)

N. Deng, C. K. Chan, L. K. Chen, and F. Tong, “Data re-modulation on downstream OFSK signal for upstream transmission in WDM passive optical network,” Electron. Lett.39(24), 1741–1743 (2003).
[CrossRef]

IEEE Commun. Mag. (2)

A. R. Dhaini, P.-H. Ho, and G. Shen, “Toward Green Next-Generation Passive Optical Networks,” IEEE Commun. Mag.49(11), 94–101 (2011).
[CrossRef]

G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A Dynamic Protocol for an Ethernet PON (EPON),” IEEE Commun. Mag.40(2), 74–80 (2002).
[CrossRef]

IEEE J. Lightwave Technol. (2)

Z. Xu, Y. J. Wen, W.-D. Zhong, M. Attygalle, X. Cheng, Y. Wang, T. H. Cheng, and C. Lu, “WDM-PON architectures with a single shared interferometer filter for carrier-reuse upstream transmission,” IEEE J. Lightwave Technol.25(12), 3669–3677 (2007).
[CrossRef]

E. Wong, K. Lee, and T. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” IEEE J. Lightwave Technol.25(1), 67–74 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett.17(1), 250–252 (2005).
[CrossRef]

Opt. Express (2)

Photonic Netw. Commun. (1)

G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved Polling with Adaptive Cycle Time (IPACT): A Dynamic Bandwidth Distribution Scheme in an Optical Access Network,” Photonic Netw. Commun.4(1), 89–107 (2002).
[CrossRef]

Other (4)

OASE project “Requirements for European next-generation optical access networks,” Deliverable 2.1 (Project ref. No. IST-7th FP-249025).

T. Uchikata and A. Tajima, “A novel power saving scheme for WDM-PON with centralized light sources,” in Proc. Opto-Electronics and Communications Conference (OECC) 2009, Hong Kong, China.

W. Jia, D. Shen, K. H. Tse, J. Xu, M. Li, and C. K. Chan, “A novel scheme to realize a power-efficient WDM passive optical network,” in Proc. Opto-Electronics and Communications Conference (OECC) 2010, Japan.

K. H. Tse, W. Jia, and C. K. Chan, “A cost-effective pilot-tone-based monitoring technique for power saving in RSOA-based WDM-PON,” OSA OFC/NFOEC 2011, Paper OThB6, Los Angeles, CA, 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the proposed energy-saving CLS-based WDM-PON architecture.

Fig. 2
Fig. 2

State transition diagram for (a) an ONU and (b) the associated transceiver in the OLT.

Fig. 3
Fig. 3

Measured BER performances of the 10Gbit/s DS and 1.25Gbit/s US signals over 20km SMF transmission for different DS ERs and in BTB case.

Fig. 4
Fig. 4

(a) ASE spectrum of free-running RSOA; (b) the spectrum after being spectrally sliced by an AWG at RN; (c) wavelength-seeding spectrum at 1545.5nm.

Fig. 5
Fig. 5

Energy-saving efficiencies in different operation modes for (a) an ONU and (b) the associated transceiver in the OLT versus US traffic load under different time thresholds.

Fig. 6
Fig. 6

ONU energy-saving efficiency versus DS traffic load under different time thresholds and different US traffic loads when the ONU is in the online state.

Tables (1)

Tables Icon

Table 1 Operation Modes of ONU and OLT According to DS and US Transmission States

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η ONU =[ 1 T D onu P D onu + T S onu P S onu + T Off onu P Off onu +( T On onu T D onu T S onu ) P A onu T total P A onu ]100% = [ T Off onu T total ( 1 P Off onu P A onu )+ T D onu T total ( 1 P D onu P A onu )+ T S onu T total ( 1 P S onu P A onu ) ]100%
η OLT =[ 1 ( T D(On) olt + T D(Off) olt ) P D olt +( T On onu T D(On) olt ) P A olt T total P A olt ]100% = [ T D(Off) olt T total ( 1 P D olt P A olt )+ T D(On) olt T total ( 1 P D olt P A olt ) ]100%

Metrics