Abstract

A laboratory system for exposing aerosol particles to ozone and rapidly measuring the subsequent changes in their single-particle fluorescence is reported. The system consists of a rotating drum chamber and a single-particle fluorescence spectrometer (SPFS) utilizing excitation at 263 nm. Measurements made with this system show preliminary results on the ultra-violet laser-induced-fluorescence (UV-LIF) spectra of single aerosolized particles of Yersinia rohdei, and of MS2 (bacteriophage) exposed to ozone. When bioparticles are exposed in the chamber the fluorescence emission peak around 330 nm: i) decreases in intensity relative to that of the 400-550 nm band; and ii) shifts slightly toward shorter-wavelengths (consistent with further drying of the particles). In these experiments, changes were observed at exposures below the US Environmental Protection Agency (EPA) limits for ozone

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lighthart and A. J. Mohr, eds., Atmospheric Microbial Aerosols (Chapman & Hall, 1994).
  2. W. Elbert, P. E. Taylor, M. O. Andreae, and U. Poschl, “Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions,” Atmos. Chem. Phys.7(17), 4569–4588 (2007).
    [CrossRef]
  3. J. Fröhlich-Nowoisky, D. A. Pickersgill, V. R. Després, and U. Pöschl, “High diversity of fungi in air particulate matter,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12814–12819 (2009).
    [CrossRef] [PubMed]
  4. J. A. Huffman, B. Treutlein, and U. Poschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys.10(7), 3215–3233 (2010).
    [CrossRef]
  5. R. M. Bowers, A. P. Sullivan, E. K. Costello, J. L. Collett, R. Knight, and N. Fierer, “Sources of bacteria in outdoor air across cities in the midwestern united states,” Appl. Environ. Microbiol.77(18), 6350–6356 (2011).
    [CrossRef] [PubMed]
  6. V. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andraea, U. Poschl, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(15598), 1–58 (2012).
  7. J. M. Sun and P. A. Ariya, “Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review,” Atmos. Environ.40(5), 795–820 (2006).
    [CrossRef]
  8. R. M. Bowers, C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, and N. Fierer, “Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei,” Appl. Environ. Microbiol.75(15), 5121–5130 (2009).
    [CrossRef] [PubMed]
  9. J. M. Prospero, E. Blades, G. Mathison, and R. Naidu, “Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust,” Aerobiologia21(1), 1–19 (2005).
    [CrossRef]
  10. T. Ichinose, S. Yoshida, K. Hiyoshi, K. Sadakane, H. Takano, M. Nishikawa, I. Mori, R. Yanagisawa, H. Kawazato, A. Yasuda, and T. Shibamoto, “The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation,” Arch. Environ. Contam. Toxicol.55(3), 348–357 (2008).
    [CrossRef] [PubMed]
  11. A. Tripathi, R. E. Jabbour, J. A. Guicheteau, S. D. Christesen, D. K. Emge, A. W. Fountain, J. R. Bottiger, E. D. Emmons, and A. P. Snyder, “Bioaerosol analysis with raman chemical imaging microspectroscopy,” Anal. Chem.81(16), 6981–6990 (2009).
    [CrossRef] [PubMed]
  12. S. C. Hill, R. G. Pinnick, P. Nachman, G. Chen, R. K. Chang, M. W. Mayo, and G. L. Fernandez, “Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles,” Appl. Opt.34(30), 7149–7155 (1995).
    [CrossRef] [PubMed]
  13. P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci.28(3), 471–482 (1997).
    [CrossRef] [PubMed]
  14. J. Ho, and Y-W., December 23, 1997 (Filed March 19, 1996). Fluorescent biological particle detection system. United States patent 5,701,012.
  15. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and Fluorescence Measurements for Field Detection of Biological Aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999).
    [CrossRef]
  16. P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express13(10), 3583–3593 (2005).
    [CrossRef] [PubMed]
  17. A. Manninen, M. Putkiranta, J. Saarela, A. Rostedt, T. Sorvajärvi, J. Toivonen, M. Marjamäki, J. Keskinen, and R. Hernberg, “Fluorescence cross sections of bioaerosols and suspended biological agents,” Appl. Opt.48(22), 4320–4328 (2009).
    [CrossRef] [PubMed]
  18. Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol.37(8), 628–639 (2003).
    [CrossRef]
  19. Y. L. Pan, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Particle-fluorescence spectrometer for real-time single-particle measurements of atmospheric organic carbon and biological aerosol,” Environ. Sci. Technol.43(2), 429–434 (2009).
    [CrossRef] [PubMed]
  20. Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010).
    [CrossRef] [PubMed]
  21. F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
    [CrossRef]
  22. V. Sivaprakasam, A. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express12(19), 4457–4466 (2004).
    [CrossRef] [PubMed]
  23. V. Sivaprakasam, H.-B. Lin, A. L. Huston, and J. D. Eversole, “Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements,” Opt. Express19(7), 6191–6208 (2011).
    [CrossRef] [PubMed]
  24. D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE97(6), 971–989 (2009).
    [CrossRef]
  25. K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010).
    [CrossRef]
  26. A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdes, and H. Kulaga, “Aerosol Characteristics in a Subway Environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
    [CrossRef]
  27. R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA; measurement and classification of single particles containing organic carbon,” Atmos. Environ.38(11), 1657–1672 (2004).
    [CrossRef]
  28. Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res.112(D24), D24S19 (2007).
    [CrossRef]
  29. A. M. Gabey, M. W. Gallagher, J. Whitehead, J. Dorsey, P. H. Kaye, and W. R. Stanley, “Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual-channel fluorescence aerosol spectrometer,” Atmos. Chem. Phys.10(10), 4453–4466 (2010).
    [CrossRef]
  30. A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8μm in urban and tropical rainforest locations,” Atmos. Chem. Phys.11(11), 5491–5504 (2011).
    [CrossRef]
  31. V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci.34(12), 1711–1727 (2003).
    [CrossRef]
  32. R. DeFreez, “LIF bio-aerosol threat triggers: then and now,” Proc. SPIE 7484, 74840H (15 pp.)(2009).
  33. C. Pöhlker, J. A. Huffman, and U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. Discuss.4(5), 5857–5933 (2011).
    [CrossRef]
  34. Y. Rudich, N. M. Donahue, and T. F. Mentel, “Aging of organic aerosol: bridging the gap between laboratory and field studies,” Annu. Rev. Phys. Chem.58(1), 321–352 (2007).
    [CrossRef] [PubMed]
  35. W. D. Sawyer, J. V. Jemski, A. L. Hogge, H. T. Eigelsbach, E. K. Wolfe, H. G. Dangerfield, W. S. Gochenour, and D. Crozier, “Effect of Aerosol Age on the Infectivity of Airborne Pasteurella tularensis for Macaca mulatta and Man,” J. Bacteriol.91(6), 2180–2184 (1966).
    [PubMed]
  36. F. A. Dark and T. Nash, “Comparative toxicity of various ozonized olefins to bacteria suspended in air,” J. Hyg. (Lond.)68(2), 245–252 (1970).
    [CrossRef] [PubMed]
  37. R. Bailey, L. Fielding, A. Young, and C. Griffith, “Effect of Ozone and Open Air Factor against Aerosolized Micrococcus luteus,” J. Food Prot.70(12), 2769–2773 (2007).
    [PubMed]
  38. H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: Influence of fungal spore age and air exposure,” J. Aerosol Sci.38(1), 83–96 (2007).
    [CrossRef]
  39. L. Fan, J. Song, P. D. Hildebrand, and C. F. Forney, “Interaction of ozone and negative air ions to control micro-organisms,” J. Appl. Microbiol.93(1), 144–148 (2002).
    [CrossRef] [PubMed]
  40. J. G. Kim and A. E. Yousef, “Inactivation kinetics of foodborne spoilage and pathogenic bacteria by ozone,” J. Food Sci.65(3), 521–528 (2000).
    [CrossRef]
  41. M. V. Selma, A. M. Ibáñez, M. Cantwell, and T. Suslow, “Reduction by gaseous ozone of salmonella and microbial flora associated with fresh-cut cantaloupe,” Food Microbiol.25(4), 558–565 (2008).
    [CrossRef] [PubMed]
  42. A. V. Ignatenko, B. A. Tatarinov, N. N. Khovratovich, V. P. Khrapovitskii, and S. N. Cherenkevich, “Spectral-fluorescent investigation of the action of ozone on aromatic amino acids,” J. Appl. Spectrosc.37(1), 781–784 (1982).
  43. A. V. Ignatenko, “Use of the method of tryptophan fluorescence to characterize disruptions of the structure of ozonized proteins,” J. Appl. Spectrosc.49(1), 691–695 (1988).
    [CrossRef]
  44. E. Fujimori, “Changes induced by ozone and ultraviolet light in type I collagen. Bovine Achilles tendon collagen versus rat tail tendon collagen,” Eur. J. Biochem.152(2), 299–306 (1985).
    [CrossRef] [PubMed]
  45. J. B. Mudd, R. Leavitt, A. Ongun, and T. T. McManus, “Reaction of ozone with amino acids and proteins,” Atmos. Environ.3(6), 669–681 (1969).
    [CrossRef] [PubMed]
  46. T. Kotiaho, M. N. Eberlin, P. Vainiotalo, and R. Kostiainen, “Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides,” J. Am. Soc. Mass Spectrom.11(6), 526–535 (2000).
    [CrossRef] [PubMed]
  47. V. V. Roshchina and E. V. Melnikova, “Pollen chemosensitivity to ozone and peroxides,” Russ. J. Plant Physiol.48(1), 74–83 (2001).
    [CrossRef]
  48. V. V. Roshchina, “Autofluorescence of plant secreting cells as a biosensor and bioindicator reaction,” J. Fluoresc.13(5), 403–420 (2003).
    [CrossRef]
  49. L. J. Goldberg, H. M. S. Watkins, E. E. Boerke, and M. A. Chatigny, “The use of a rotating drum for the study of aerosols over extended periods of time,” Am. J. Hyg.68(1), 85–93 (1958).
    [PubMed]
  50. V. Krumins, E.-K. Son, G. Mainelis, and D. E. Fennell, “Retention of Inactivated Bioaerosols and Ethene in a Rotating Gioreactor Constructed for Bioaerosol Activity Studies,” Clean36(7), 593–600 (2008).
  51. K.-A. Thompson, A. M. Bennett, and J. T. Walker, “Aerosol survival of Staphylococcus epidermidis,” J. Hosp. Infect.78(3), 216–220 (2011).
    [CrossRef] [PubMed]
  52. Y. L. Pan, S. C. Hill, R. G. Pinnick, J. L. Santarpia, N. Baker, B. Alvarez, S. Ratnesar-Shumate, B. Cottrell, and L. McKee, “Fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric processing,” Proc. SPIE8018, 801804, 801804-7 (2011).
    [CrossRef]
  53. S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011).
    [CrossRef]
  54. J. L. Santarpia, R. Gasparini, R. Li, and D. R. Collins, “Diurnal variations in the hygroscopic growth cycles of ambient aerosol populations,” J. Geophys. Res.110(D3), D03206 (2005).
    [CrossRef]
  55. R. L. Gruel, C. R. Reid, and R. T. Allemann, “The optimum rate of drum rotation for aerosol aging,” J. Aerosol Sci.18(1), 17–22 (1987).
    [CrossRef]
  56. S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
    [CrossRef] [PubMed]
  57. J. B. Mudd, F. Leh, and T. T. McManus, “Reaction of Ozone with Nicotinamide and its Derivatives,” Arch. Biochem. Biophys.161(2), 408–419 (1974).
    [CrossRef] [PubMed]
  58. Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J.-P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B72(4), 449–454 (2001).
    [CrossRef]
  59. J. B. Mudd, P. J. Dawson, S. Tseng, and F. P. Liu, “Reaction of ozone with protein tryptophans: band III, serum albumin, and cytochrome C,” Arch. Biochem. Biophys.338(2), 143–149 (1997).
    [CrossRef] [PubMed]
  60. B. S. Berlett, R. L. Levine, and E. R. Stadtman, “Comparison of the effects of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin,” J. Biol. Chem.271(8), 4177–4182 (1996).
    [CrossRef] [PubMed]
  61. M. Shiraiwa, M. Ammann, T. Koop, and U. Pöschl, “Gas uptake and chemical aging of semisolid organic aerosol particles,” Proc. Natl. Acad. Sci. U.S.A.108(27), 11003–11008 (2011).
    [CrossRef] [PubMed]
  62. W. A. Pryor and R. M. Uppu, “A kinetic model for the competitive reactions of ozone with amino acid residues in proteins in reverse micelles,” J. Biol. Chem.268(5), 3120–3126 (1993).
    [PubMed]
  63. W. A. Pryor, “How far does ozone penetrate into the pulmonary air/tissue boundary before it reacts?” Free Radic. Biol. Med.12(1), 83–88 (1992).
    [CrossRef] [PubMed]
  64. W. A. Pryor, G. L. Squadrito, and M. Friedman, “The cascade mechanism to explain ozone toxicity: the role of lipid ozonation products,” Free Radic. Biol. Med.19(6), 935–941 (1995).
    [CrossRef] [PubMed]

2012 (1)

V. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andraea, U. Poschl, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(15598), 1–58 (2012).

2011 (8)

M. Shiraiwa, M. Ammann, T. Koop, and U. Pöschl, “Gas uptake and chemical aging of semisolid organic aerosol particles,” Proc. Natl. Acad. Sci. U.S.A.108(27), 11003–11008 (2011).
[CrossRef] [PubMed]

V. Sivaprakasam, H.-B. Lin, A. L. Huston, and J. D. Eversole, “Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements,” Opt. Express19(7), 6191–6208 (2011).
[CrossRef] [PubMed]

A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8μm in urban and tropical rainforest locations,” Atmos. Chem. Phys.11(11), 5491–5504 (2011).
[CrossRef]

C. Pöhlker, J. A. Huffman, and U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. Discuss.4(5), 5857–5933 (2011).
[CrossRef]

K.-A. Thompson, A. M. Bennett, and J. T. Walker, “Aerosol survival of Staphylococcus epidermidis,” J. Hosp. Infect.78(3), 216–220 (2011).
[CrossRef] [PubMed]

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. L. Santarpia, N. Baker, B. Alvarez, S. Ratnesar-Shumate, B. Cottrell, and L. McKee, “Fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric processing,” Proc. SPIE8018, 801804, 801804-7 (2011).
[CrossRef]

S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011).
[CrossRef]

R. M. Bowers, A. P. Sullivan, E. K. Costello, J. L. Collett, R. Knight, and N. Fierer, “Sources of bacteria in outdoor air across cities in the midwestern united states,” Appl. Environ. Microbiol.77(18), 6350–6356 (2011).
[CrossRef] [PubMed]

2010 (4)

J. A. Huffman, B. Treutlein, and U. Poschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys.10(7), 3215–3233 (2010).
[CrossRef]

A. M. Gabey, M. W. Gallagher, J. Whitehead, J. Dorsey, P. H. Kaye, and W. R. Stanley, “Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual-channel fluorescence aerosol spectrometer,” Atmos. Chem. Phys.10(10), 4453–4466 (2010).
[CrossRef]

K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

2009 (6)

A. Manninen, M. Putkiranta, J. Saarela, A. Rostedt, T. Sorvajärvi, J. Toivonen, M. Marjamäki, J. Keskinen, and R. Hernberg, “Fluorescence cross sections of bioaerosols and suspended biological agents,” Appl. Opt.48(22), 4320–4328 (2009).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Particle-fluorescence spectrometer for real-time single-particle measurements of atmospheric organic carbon and biological aerosol,” Environ. Sci. Technol.43(2), 429–434 (2009).
[CrossRef] [PubMed]

R. M. Bowers, C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, and N. Fierer, “Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei,” Appl. Environ. Microbiol.75(15), 5121–5130 (2009).
[CrossRef] [PubMed]

A. Tripathi, R. E. Jabbour, J. A. Guicheteau, S. D. Christesen, D. K. Emge, A. W. Fountain, J. R. Bottiger, E. D. Emmons, and A. P. Snyder, “Bioaerosol analysis with raman chemical imaging microspectroscopy,” Anal. Chem.81(16), 6981–6990 (2009).
[CrossRef] [PubMed]

D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE97(6), 971–989 (2009).
[CrossRef]

J. Fröhlich-Nowoisky, D. A. Pickersgill, V. R. Després, and U. Pöschl, “High diversity of fungi in air particulate matter,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12814–12819 (2009).
[CrossRef] [PubMed]

2008 (3)

V. Krumins, E.-K. Son, G. Mainelis, and D. E. Fennell, “Retention of Inactivated Bioaerosols and Ethene in a Rotating Gioreactor Constructed for Bioaerosol Activity Studies,” Clean36(7), 593–600 (2008).

M. V. Selma, A. M. Ibáñez, M. Cantwell, and T. Suslow, “Reduction by gaseous ozone of salmonella and microbial flora associated with fresh-cut cantaloupe,” Food Microbiol.25(4), 558–565 (2008).
[CrossRef] [PubMed]

T. Ichinose, S. Yoshida, K. Hiyoshi, K. Sadakane, H. Takano, M. Nishikawa, I. Mori, R. Yanagisawa, H. Kawazato, A. Yasuda, and T. Shibamoto, “The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation,” Arch. Environ. Contam. Toxicol.55(3), 348–357 (2008).
[CrossRef] [PubMed]

2007 (5)

Y. Rudich, N. M. Donahue, and T. F. Mentel, “Aging of organic aerosol: bridging the gap between laboratory and field studies,” Annu. Rev. Phys. Chem.58(1), 321–352 (2007).
[CrossRef] [PubMed]

R. Bailey, L. Fielding, A. Young, and C. Griffith, “Effect of Ozone and Open Air Factor against Aerosolized Micrococcus luteus,” J. Food Prot.70(12), 2769–2773 (2007).
[PubMed]

H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: Influence of fungal spore age and air exposure,” J. Aerosol Sci.38(1), 83–96 (2007).
[CrossRef]

Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res.112(D24), D24S19 (2007).
[CrossRef]

W. Elbert, P. E. Taylor, M. O. Andreae, and U. Poschl, “Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions,” Atmos. Chem. Phys.7(17), 4569–4588 (2007).
[CrossRef]

2006 (1)

J. M. Sun and P. A. Ariya, “Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review,” Atmos. Environ.40(5), 795–820 (2006).
[CrossRef]

2005 (3)

J. M. Prospero, E. Blades, G. Mathison, and R. Naidu, “Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust,” Aerobiologia21(1), 1–19 (2005).
[CrossRef]

P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express13(10), 3583–3593 (2005).
[CrossRef] [PubMed]

J. L. Santarpia, R. Gasparini, R. Li, and D. R. Collins, “Diurnal variations in the hygroscopic growth cycles of ambient aerosol populations,” J. Geophys. Res.110(D3), D03206 (2005).
[CrossRef]

2004 (2)

R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA; measurement and classification of single particles containing organic carbon,” Atmos. Environ.38(11), 1657–1672 (2004).
[CrossRef]

V. Sivaprakasam, A. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express12(19), 4457–4466 (2004).
[CrossRef] [PubMed]

2003 (4)

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol.37(8), 628–639 (2003).
[CrossRef]

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdes, and H. Kulaga, “Aerosol Characteristics in a Subway Environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci.34(12), 1711–1727 (2003).
[CrossRef]

V. V. Roshchina, “Autofluorescence of plant secreting cells as a biosensor and bioindicator reaction,” J. Fluoresc.13(5), 403–420 (2003).
[CrossRef]

2002 (1)

L. Fan, J. Song, P. D. Hildebrand, and C. F. Forney, “Interaction of ozone and negative air ions to control micro-organisms,” J. Appl. Microbiol.93(1), 144–148 (2002).
[CrossRef] [PubMed]

2001 (3)

V. V. Roshchina and E. V. Melnikova, “Pollen chemosensitivity to ozone and peroxides,” Russ. J. Plant Physiol.48(1), 74–83 (2001).
[CrossRef]

S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J.-P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B72(4), 449–454 (2001).
[CrossRef]

2000 (2)

T. Kotiaho, M. N. Eberlin, P. Vainiotalo, and R. Kostiainen, “Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides,” J. Am. Soc. Mass Spectrom.11(6), 526–535 (2000).
[CrossRef] [PubMed]

J. G. Kim and A. E. Yousef, “Inactivation kinetics of foodborne spoilage and pathogenic bacteria by ozone,” J. Food Sci.65(3), 521–528 (2000).
[CrossRef]

1999 (2)

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and Fluorescence Measurements for Field Detection of Biological Aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999).
[CrossRef]

1997 (2)

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci.28(3), 471–482 (1997).
[CrossRef] [PubMed]

J. B. Mudd, P. J. Dawson, S. Tseng, and F. P. Liu, “Reaction of ozone with protein tryptophans: band III, serum albumin, and cytochrome C,” Arch. Biochem. Biophys.338(2), 143–149 (1997).
[CrossRef] [PubMed]

1996 (1)

B. S. Berlett, R. L. Levine, and E. R. Stadtman, “Comparison of the effects of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin,” J. Biol. Chem.271(8), 4177–4182 (1996).
[CrossRef] [PubMed]

1995 (2)

1993 (1)

W. A. Pryor and R. M. Uppu, “A kinetic model for the competitive reactions of ozone with amino acid residues in proteins in reverse micelles,” J. Biol. Chem.268(5), 3120–3126 (1993).
[PubMed]

1992 (1)

W. A. Pryor, “How far does ozone penetrate into the pulmonary air/tissue boundary before it reacts?” Free Radic. Biol. Med.12(1), 83–88 (1992).
[CrossRef] [PubMed]

1988 (1)

A. V. Ignatenko, “Use of the method of tryptophan fluorescence to characterize disruptions of the structure of ozonized proteins,” J. Appl. Spectrosc.49(1), 691–695 (1988).
[CrossRef]

1987 (1)

R. L. Gruel, C. R. Reid, and R. T. Allemann, “The optimum rate of drum rotation for aerosol aging,” J. Aerosol Sci.18(1), 17–22 (1987).
[CrossRef]

1985 (1)

E. Fujimori, “Changes induced by ozone and ultraviolet light in type I collagen. Bovine Achilles tendon collagen versus rat tail tendon collagen,” Eur. J. Biochem.152(2), 299–306 (1985).
[CrossRef] [PubMed]

1982 (1)

A. V. Ignatenko, B. A. Tatarinov, N. N. Khovratovich, V. P. Khrapovitskii, and S. N. Cherenkevich, “Spectral-fluorescent investigation of the action of ozone on aromatic amino acids,” J. Appl. Spectrosc.37(1), 781–784 (1982).

1974 (1)

J. B. Mudd, F. Leh, and T. T. McManus, “Reaction of Ozone with Nicotinamide and its Derivatives,” Arch. Biochem. Biophys.161(2), 408–419 (1974).
[CrossRef] [PubMed]

1970 (1)

F. A. Dark and T. Nash, “Comparative toxicity of various ozonized olefins to bacteria suspended in air,” J. Hyg. (Lond.)68(2), 245–252 (1970).
[CrossRef] [PubMed]

1969 (1)

J. B. Mudd, R. Leavitt, A. Ongun, and T. T. McManus, “Reaction of ozone with amino acids and proteins,” Atmos. Environ.3(6), 669–681 (1969).
[CrossRef] [PubMed]

1966 (1)

W. D. Sawyer, J. V. Jemski, A. L. Hogge, H. T. Eigelsbach, E. K. Wolfe, H. G. Dangerfield, W. S. Gochenour, and D. Crozier, “Effect of Aerosol Age on the Infectivity of Airborne Pasteurella tularensis for Macaca mulatta and Man,” J. Bacteriol.91(6), 2180–2184 (1966).
[PubMed]

1958 (1)

L. J. Goldberg, H. M. S. Watkins, E. E. Boerke, and M. A. Chatigny, “The use of a rotating drum for the study of aerosols over extended periods of time,” Am. J. Hyg.68(1), 85–93 (1958).
[PubMed]

Agranovski, V.

V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci.34(12), 1711–1727 (2003).
[CrossRef]

Allemann, R. T.

R. L. Gruel, C. R. Reid, and R. T. Allemann, “The optimum rate of drum rotation for aerosol aging,” J. Aerosol Sci.18(1), 17–22 (1987).
[CrossRef]

Alvarez, B.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. L. Santarpia, N. Baker, B. Alvarez, S. Ratnesar-Shumate, B. Cottrell, and L. McKee, “Fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric processing,” Proc. SPIE8018, 801804, 801804-7 (2011).
[CrossRef]

Ammann, M.

M. Shiraiwa, M. Ammann, T. Koop, and U. Pöschl, “Gas uptake and chemical aging of semisolid organic aerosol particles,” Proc. Natl. Acad. Sci. U.S.A.108(27), 11003–11008 (2011).
[CrossRef] [PubMed]

Andraea, M. O.

V. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andraea, U. Poschl, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(15598), 1–58 (2012).

Andreae, M. O.

W. Elbert, P. E. Taylor, M. O. Andreae, and U. Poschl, “Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions,” Atmos. Chem. Phys.7(17), 4569–4588 (2007).
[CrossRef]

Aoyagi, H.

K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010).
[CrossRef]

Ariya, P. A.

J. M. Sun and P. A. Ariya, “Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review,” Atmos. Environ.40(5), 795–820 (2006).
[CrossRef]

Bailey, R.

R. Bailey, L. Fielding, A. Young, and C. Griffith, “Effect of Ozone and Open Air Factor against Aerosolized Micrococcus luteus,” J. Food Prot.70(12), 2769–2773 (2007).
[PubMed]

Baker, N.

S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. L. Santarpia, N. Baker, B. Alvarez, S. Ratnesar-Shumate, B. Cottrell, and L. McKee, “Fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric processing,” Proc. SPIE8018, 801804, 801804-7 (2011).
[CrossRef]

Bare, C.

S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011).
[CrossRef]

Barrington, S. J.

Baxter, K. L.

Bennett, A. M.

K.-A. Thompson, A. M. Bennett, and J. T. Walker, “Aerosol survival of Staphylococcus epidermidis,” J. Hosp. Infect.78(3), 216–220 (2011).
[CrossRef] [PubMed]

Berlett, B. S.

B. S. Berlett, R. L. Levine, and E. R. Stadtman, “Comparison of the effects of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin,” J. Biol. Chem.271(8), 4177–4182 (1996).
[CrossRef] [PubMed]

Birenzvige, A.

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdes, and H. Kulaga, “Aerosol Characteristics in a Subway Environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

Blades, E.

J. M. Prospero, E. Blades, G. Mathison, and R. Naidu, “Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust,” Aerobiologia21(1), 1–19 (2005).
[CrossRef]

Boerke, E. E.

L. J. Goldberg, H. M. S. Watkins, E. E. Boerke, and M. A. Chatigny, “The use of a rotating drum for the study of aerosols over extended periods of time,” Am. J. Hyg.68(1), 85–93 (1958).
[PubMed]

Bottiger, J.

Bottiger, J. R.

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

A. Tripathi, R. E. Jabbour, J. A. Guicheteau, S. D. Christesen, D. K. Emge, A. W. Fountain, J. R. Bottiger, E. D. Emmons, and A. P. Snyder, “Bioaerosol analysis with raman chemical imaging microspectroscopy,” Anal. Chem.81(16), 6981–6990 (2009).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J.-P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B72(4), 449–454 (2001).
[CrossRef]

Bowers, R. M.

R. M. Bowers, A. P. Sullivan, E. K. Costello, J. L. Collett, R. Knight, and N. Fierer, “Sources of bacteria in outdoor air across cities in the midwestern united states,” Appl. Environ. Microbiol.77(18), 6350–6356 (2011).
[CrossRef] [PubMed]

R. M. Bowers, C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, and N. Fierer, “Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei,” Appl. Environ. Microbiol.75(15), 5121–5130 (2009).
[CrossRef] [PubMed]

Brinkley, K. M.

S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011).
[CrossRef]

Bronk, B. V.

Burrows, S. M.

V. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andraea, U. Poschl, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(15598), 1–58 (2012).

Buryak, G.

V. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andraea, U. Poschl, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(15598), 1–58 (2012).

Cantwell, M.

M. V. Selma, A. M. Ibáñez, M. Cantwell, and T. Suslow, “Reduction by gaseous ozone of salmonella and microbial flora associated with fresh-cut cantaloupe,” Food Microbiol.25(4), 558–565 (2008).
[CrossRef] [PubMed]

Cary, W. K.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and Fluorescence Measurements for Field Detection of Biological Aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999).
[CrossRef]

Chang, R. K.

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Particle-fluorescence spectrometer for real-time single-particle measurements of atmospheric organic carbon and biological aerosol,” Environ. Sci. Technol.43(2), 429–434 (2009).
[CrossRef] [PubMed]

Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res.112(D24), D24S19 (2007).
[CrossRef]

R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA; measurement and classification of single particles containing organic carbon,” Atmos. Environ.38(11), 1657–1672 (2004).
[CrossRef]

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol.37(8), 628–639 (2003).
[CrossRef]

S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J.-P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B72(4), 449–454 (2001).
[CrossRef]

S. C. Hill, R. G. Pinnick, P. Nachman, G. Chen, R. K. Chang, M. W. Mayo, and G. L. Fernandez, “Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles,” Appl. Opt.34(30), 7149–7155 (1995).
[CrossRef] [PubMed]

Chatigny, M. A.

L. J. Goldberg, H. M. S. Watkins, E. E. Boerke, and M. A. Chatigny, “The use of a rotating drum for the study of aerosols over extended periods of time,” Am. J. Hyg.68(1), 85–93 (1958).
[PubMed]

Chen, G.

Cherenkevich, S. N.

A. V. Ignatenko, B. A. Tatarinov, N. N. Khovratovich, V. P. Khrapovitskii, and S. N. Cherenkevich, “Spectral-fluorescent investigation of the action of ozone on aromatic amino acids,” J. Appl. Spectrosc.37(1), 781–784 (1982).

Christesen, S. D.

A. Tripathi, R. E. Jabbour, J. A. Guicheteau, S. D. Christesen, D. K. Emge, A. W. Fountain, J. R. Bottiger, E. D. Emmons, and A. P. Snyder, “Bioaerosol analysis with raman chemical imaging microspectroscopy,” Anal. Chem.81(16), 6981–6990 (2009).
[CrossRef] [PubMed]

Collett, J. L.

R. M. Bowers, A. P. Sullivan, E. K. Costello, J. L. Collett, R. Knight, and N. Fierer, “Sources of bacteria in outdoor air across cities in the midwestern united states,” Appl. Environ. Microbiol.77(18), 6350–6356 (2011).
[CrossRef] [PubMed]

Collins, D. R.

J. L. Santarpia, R. Gasparini, R. Li, and D. R. Collins, “Diurnal variations in the hygroscopic growth cycles of ambient aerosol populations,” J. Geophys. Res.110(D3), D03206 (2005).
[CrossRef]

Costello, E. K.

R. M. Bowers, A. P. Sullivan, E. K. Costello, J. L. Collett, R. Knight, and N. Fierer, “Sources of bacteria in outdoor air across cities in the midwestern united states,” Appl. Environ. Microbiol.77(18), 6350–6356 (2011).
[CrossRef] [PubMed]

Cottrell, B.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. L. Santarpia, N. Baker, B. Alvarez, S. Ratnesar-Shumate, B. Cottrell, and L. McKee, “Fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric processing,” Proc. SPIE8018, 801804, 801804-7 (2011).
[CrossRef]

Crozier, D.

W. D. Sawyer, J. V. Jemski, A. L. Hogge, H. T. Eigelsbach, E. K. Wolfe, H. G. Dangerfield, W. S. Gochenour, and D. Crozier, “Effect of Aerosol Age on the Infectivity of Airborne Pasteurella tularensis for Macaca mulatta and Man,” J. Bacteriol.91(6), 2180–2184 (1966).
[PubMed]

Dangerfield, H. G.

W. D. Sawyer, J. V. Jemski, A. L. Hogge, H. T. Eigelsbach, E. K. Wolfe, H. G. Dangerfield, W. S. Gochenour, and D. Crozier, “Effect of Aerosol Age on the Infectivity of Airborne Pasteurella tularensis for Macaca mulatta and Man,” J. Bacteriol.91(6), 2180–2184 (1966).
[PubMed]

Dark, F. A.

F. A. Dark and T. Nash, “Comparative toxicity of various ozonized olefins to bacteria suspended in air,” J. Hyg. (Lond.)68(2), 245–252 (1970).
[CrossRef] [PubMed]

Dawson, P. J.

J. B. Mudd, P. J. Dawson, S. Tseng, and F. P. Liu, “Reaction of ozone with protein tryptophans: band III, serum albumin, and cytochrome C,” Arch. Biochem. Biophys.338(2), 143–149 (1997).
[CrossRef] [PubMed]

Despres, V.

V. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andraea, U. Poschl, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(15598), 1–58 (2012).

Després, V. R.

J. Fröhlich-Nowoisky, D. A. Pickersgill, V. R. Després, and U. Pöschl, “High diversity of fungi in air particulate matter,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12814–12819 (2009).
[CrossRef] [PubMed]

Donahue, N. M.

Y. Rudich, N. M. Donahue, and T. F. Mentel, “Aging of organic aerosol: bridging the gap between laboratory and field studies,” Annu. Rev. Phys. Chem.58(1), 321–352 (2007).
[CrossRef] [PubMed]

Dorsey, J.

A. M. Gabey, M. W. Gallagher, J. Whitehead, J. Dorsey, P. H. Kaye, and W. R. Stanley, “Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual-channel fluorescence aerosol spectrometer,” Atmos. Chem. Phys.10(10), 4453–4466 (2010).
[CrossRef]

Eberlin, M. N.

T. Kotiaho, M. N. Eberlin, P. Vainiotalo, and R. Kostiainen, “Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides,” J. Am. Soc. Mass Spectrom.11(6), 526–535 (2000).
[CrossRef] [PubMed]

Eigelsbach, H. T.

W. D. Sawyer, J. V. Jemski, A. L. Hogge, H. T. Eigelsbach, E. K. Wolfe, H. G. Dangerfield, W. S. Gochenour, and D. Crozier, “Effect of Aerosol Age on the Infectivity of Airborne Pasteurella tularensis for Macaca mulatta and Man,” J. Bacteriol.91(6), 2180–2184 (1966).
[PubMed]

Elbert, W.

V. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andraea, U. Poschl, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(15598), 1–58 (2012).

W. Elbert, P. E. Taylor, M. O. Andreae, and U. Poschl, “Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions,” Atmos. Chem. Phys.7(17), 4569–4588 (2007).
[CrossRef]

Emge, D. K.

A. Tripathi, R. E. Jabbour, J. A. Guicheteau, S. D. Christesen, D. K. Emge, A. W. Fountain, J. R. Bottiger, E. D. Emmons, and A. P. Snyder, “Bioaerosol analysis with raman chemical imaging microspectroscopy,” Anal. Chem.81(16), 6981–6990 (2009).
[CrossRef] [PubMed]

Emmons, E. D.

A. Tripathi, R. E. Jabbour, J. A. Guicheteau, S. D. Christesen, D. K. Emge, A. W. Fountain, J. R. Bottiger, E. D. Emmons, and A. P. Snyder, “Bioaerosol analysis with raman chemical imaging microspectroscopy,” Anal. Chem.81(16), 6981–6990 (2009).
[CrossRef] [PubMed]

Eversole, J.

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdes, and H. Kulaga, “Aerosol Characteristics in a Subway Environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

Eversole, J. D.

Fall, R.

R. M. Bowers, C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, and N. Fierer, “Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei,” Appl. Environ. Microbiol.75(15), 5121–5130 (2009).
[CrossRef] [PubMed]

Fan, L.

L. Fan, J. Song, P. D. Hildebrand, and C. F. Forney, “Interaction of ozone and negative air ions to control micro-organisms,” J. Appl. Microbiol.93(1), 144–148 (2002).
[CrossRef] [PubMed]

Fell, N. F.

Fennell, D. E.

V. Krumins, E.-K. Son, G. Mainelis, and D. E. Fennell, “Retention of Inactivated Bioaerosols and Ethene in a Rotating Gioreactor Constructed for Bioaerosol Activity Studies,” Clean36(7), 593–600 (2008).

Fernandez, G. L.

Fielding, L.

R. Bailey, L. Fielding, A. Young, and C. Griffith, “Effect of Ozone and Open Air Factor against Aerosolized Micrococcus luteus,” J. Food Prot.70(12), 2769–2773 (2007).
[PubMed]

Fierer, N.

R. M. Bowers, A. P. Sullivan, E. K. Costello, J. L. Collett, R. Knight, and N. Fierer, “Sources of bacteria in outdoor air across cities in the midwestern united states,” Appl. Environ. Microbiol.77(18), 6350–6356 (2011).
[CrossRef] [PubMed]

R. M. Bowers, C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, and N. Fierer, “Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei,” Appl. Environ. Microbiol.75(15), 5121–5130 (2009).
[CrossRef] [PubMed]

Foot, E. V.

Forney, C. F.

L. Fan, J. Song, P. D. Hildebrand, and C. F. Forney, “Interaction of ozone and negative air ions to control micro-organisms,” J. Appl. Microbiol.93(1), 144–148 (2002).
[CrossRef] [PubMed]

Fountain, A. W.

A. Tripathi, R. E. Jabbour, J. A. Guicheteau, S. D. Christesen, D. K. Emge, A. W. Fountain, J. R. Bottiger, E. D. Emmons, and A. P. Snyder, “Bioaerosol analysis with raman chemical imaging microspectroscopy,” Anal. Chem.81(16), 6981–6990 (2009).
[CrossRef] [PubMed]

Francesconi, S.

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdes, and H. Kulaga, “Aerosol Characteristics in a Subway Environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

Friedman, M.

W. A. Pryor, G. L. Squadrito, and M. Friedman, “The cascade mechanism to explain ozone toxicity: the role of lipid ozonation products,” Free Radic. Biol. Med.19(6), 935–941 (1995).
[CrossRef] [PubMed]

Frohlich-Nowoisky, J.

V. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andraea, U. Poschl, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(15598), 1–58 (2012).

Fröhlich-Nowoisky, J.

J. Fröhlich-Nowoisky, D. A. Pickersgill, V. R. Després, and U. Pöschl, “High diversity of fungi in air particulate matter,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12814–12819 (2009).
[CrossRef] [PubMed]

Fujimori, E.

E. Fujimori, “Changes induced by ozone and ultraviolet light in type I collagen. Bovine Achilles tendon collagen versus rat tail tendon collagen,” Eur. J. Biochem.152(2), 299–306 (1985).
[CrossRef] [PubMed]

Gabey, A. M.

A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8μm in urban and tropical rainforest locations,” Atmos. Chem. Phys.11(11), 5491–5504 (2011).
[CrossRef]

A. M. Gabey, M. W. Gallagher, J. Whitehead, J. Dorsey, P. H. Kaye, and W. R. Stanley, “Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual-channel fluorescence aerosol spectrometer,” Atmos. Chem. Phys.10(10), 4453–4466 (2010).
[CrossRef]

Gallagher, M. W.

A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8μm in urban and tropical rainforest locations,” Atmos. Chem. Phys.11(11), 5491–5504 (2011).
[CrossRef]

A. M. Gabey, M. W. Gallagher, J. Whitehead, J. Dorsey, P. H. Kaye, and W. R. Stanley, “Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual-channel fluorescence aerosol spectrometer,” Atmos. Chem. Phys.10(10), 4453–4466 (2010).
[CrossRef]

Gasparini, R.

J. L. Santarpia, R. Gasparini, R. Li, and D. R. Collins, “Diurnal variations in the hygroscopic growth cycles of ambient aerosol populations,” J. Geophys. Res.110(D3), D03206 (2005).
[CrossRef]

Gochenour, W. S.

W. D. Sawyer, J. V. Jemski, A. L. Hogge, H. T. Eigelsbach, E. K. Wolfe, H. G. Dangerfield, W. S. Gochenour, and D. Crozier, “Effect of Aerosol Age on the Infectivity of Airborne Pasteurella tularensis for Macaca mulatta and Man,” J. Bacteriol.91(6), 2180–2184 (1966).
[PubMed]

Goldberg, L. J.

L. J. Goldberg, H. M. S. Watkins, E. E. Boerke, and M. A. Chatigny, “The use of a rotating drum for the study of aerosols over extended periods of time,” Am. J. Hyg.68(1), 85–93 (1958).
[PubMed]

Greenwood, D. P.

D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE97(6), 971–989 (2009).
[CrossRef]

Griffith, C.

R. Bailey, L. Fielding, A. Young, and C. Griffith, “Effect of Ozone and Open Air Factor against Aerosolized Micrococcus luteus,” J. Food Prot.70(12), 2769–2773 (2007).
[PubMed]

Gruel, R. L.

R. L. Gruel, C. R. Reid, and R. T. Allemann, “The optimum rate of drum rotation for aerosol aging,” J. Aerosol Sci.18(1), 17–22 (1987).
[CrossRef]

Guicheteau, J. A.

A. Tripathi, R. E. Jabbour, J. A. Guicheteau, S. D. Christesen, D. K. Emge, A. W. Fountain, J. R. Bottiger, E. D. Emmons, and A. P. Snyder, “Bioaerosol analysis with raman chemical imaging microspectroscopy,” Anal. Chem.81(16), 6981–6990 (2009).
[CrossRef] [PubMed]

Hairston, P. P.

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci.28(3), 471–482 (1997).
[CrossRef] [PubMed]

Hallar, A. G.

R. M. Bowers, C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, and N. Fierer, “Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei,” Appl. Environ. Microbiol.75(15), 5121–5130 (2009).
[CrossRef] [PubMed]

Halverson, J.

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol.37(8), 628–639 (2003).
[CrossRef]

Hamady, M.

R. M. Bowers, C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, and N. Fierer, “Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei,” Appl. Environ. Microbiol.75(15), 5121–5130 (2009).
[CrossRef] [PubMed]

Hardgrove, J. J.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and Fluorescence Measurements for Field Detection of Biological Aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999).
[CrossRef]

Hargreaves, M.

H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: Influence of fungal spore age and air exposure,” J. Aerosol Sci.38(1), 83–96 (2007).
[CrossRef]

V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci.34(12), 1711–1727 (2003).
[CrossRef]

Hartings, J.

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol.37(8), 628–639 (2003).
[CrossRef]

Hernberg, R.

Hildebrand, P. D.

L. Fan, J. Song, P. D. Hildebrand, and C. F. Forney, “Interaction of ozone and negative air ions to control micro-organisms,” J. Appl. Microbiol.93(1), 144–148 (2002).
[CrossRef] [PubMed]

Hill, S. C.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. L. Santarpia, N. Baker, B. Alvarez, S. Ratnesar-Shumate, B. Cottrell, and L. McKee, “Fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric processing,” Proc. SPIE8018, 801804, 801804-7 (2011).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Particle-fluorescence spectrometer for real-time single-particle measurements of atmospheric organic carbon and biological aerosol,” Environ. Sci. Technol.43(2), 429–434 (2009).
[CrossRef] [PubMed]

Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res.112(D24), D24S19 (2007).
[CrossRef]

R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA; measurement and classification of single particles containing organic carbon,” Atmos. Environ.38(11), 1657–1672 (2004).
[CrossRef]

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol.37(8), 628–639 (2003).
[CrossRef]

S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J.-P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B72(4), 449–454 (2001).
[CrossRef]

S. C. Hill, R. G. Pinnick, P. Nachman, G. Chen, R. K. Chang, M. W. Mayo, and G. L. Fernandez, “Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles,” Appl. Opt.34(30), 7149–7155 (1995).
[CrossRef] [PubMed]

Hirst, E.

Hiyoshi, K.

T. Ichinose, S. Yoshida, K. Hiyoshi, K. Sadakane, H. Takano, M. Nishikawa, I. Mori, R. Yanagisawa, H. Kawazato, A. Yasuda, and T. Shibamoto, “The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation,” Arch. Environ. Contam. Toxicol.55(3), 348–357 (2008).
[CrossRef] [PubMed]

Ho, J.

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci.28(3), 471–482 (1997).
[CrossRef] [PubMed]

Hogge, A. L.

W. D. Sawyer, J. V. Jemski, A. L. Hogge, H. T. Eigelsbach, E. K. Wolfe, H. G. Dangerfield, W. S. Gochenour, and D. Crozier, “Effect of Aerosol Age on the Infectivity of Airborne Pasteurella tularensis for Macaca mulatta and Man,” J. Bacteriol.91(6), 2180–2184 (1966).
[PubMed]

Holler, S.

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J.-P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B72(4), 449–454 (2001).
[CrossRef]

S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
[CrossRef] [PubMed]

Hoose, C.

V. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andraea, U. Poschl, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(15598), 1–58 (2012).

House, G.

S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011).
[CrossRef]

Huang, H.

Huffman, A. J.

V. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andraea, U. Poschl, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(15598), 1–58 (2012).

Huffman, J. A.

C. Pöhlker, J. A. Huffman, and U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. Discuss.4(5), 5857–5933 (2011).
[CrossRef]

J. A. Huffman, B. Treutlein, and U. Poschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys.10(7), 3215–3233 (2010).
[CrossRef]

Huston, A.

Huston, A. L.

Ibáñez, A. M.

M. V. Selma, A. M. Ibáñez, M. Cantwell, and T. Suslow, “Reduction by gaseous ozone of salmonella and microbial flora associated with fresh-cut cantaloupe,” Food Microbiol.25(4), 558–565 (2008).
[CrossRef] [PubMed]

Ichinose, T.

T. Ichinose, S. Yoshida, K. Hiyoshi, K. Sadakane, H. Takano, M. Nishikawa, I. Mori, R. Yanagisawa, H. Kawazato, A. Yasuda, and T. Shibamoto, “The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation,” Arch. Environ. Contam. Toxicol.55(3), 348–357 (2008).
[CrossRef] [PubMed]

Ignatenko, A. V.

A. V. Ignatenko, “Use of the method of tryptophan fluorescence to characterize disruptions of the structure of ozonized proteins,” J. Appl. Spectrosc.49(1), 691–695 (1988).
[CrossRef]

A. V. Ignatenko, B. A. Tatarinov, N. N. Khovratovich, V. P. Khrapovitskii, and S. N. Cherenkevich, “Spectral-fluorescent investigation of the action of ozone on aromatic amino acids,” J. Appl. Spectrosc.37(1), 781–784 (1982).

J. Blackall, P.

V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci.34(12), 1711–1727 (2003).
[CrossRef]

Jabbour, R. E.

A. Tripathi, R. E. Jabbour, J. A. Guicheteau, S. D. Christesen, D. K. Emge, A. W. Fountain, J. R. Bottiger, E. D. Emmons, and A. P. Snyder, “Bioaerosol analysis with raman chemical imaging microspectroscopy,” Anal. Chem.81(16), 6981–6990 (2009).
[CrossRef] [PubMed]

Jaenicke, R.

V. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andraea, U. Poschl, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(15598), 1–58 (2012).

Jemski, J. V.

W. D. Sawyer, J. V. Jemski, A. L. Hogge, H. T. Eigelsbach, E. K. Wolfe, H. G. Dangerfield, W. S. Gochenour, and D. Crozier, “Effect of Aerosol Age on the Infectivity of Airborne Pasteurella tularensis for Macaca mulatta and Man,” J. Bacteriol.91(6), 2180–2184 (1966).
[PubMed]

Jeys, T. H.

D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE97(6), 971–989 (2009).
[CrossRef]

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

Johnson, B.

D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE97(6), 971–989 (2009).
[CrossRef]

Kanaani, H.

H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: Influence of fungal spore age and air exposure,” J. Aerosol Sci.38(1), 83–96 (2007).
[CrossRef]

Kawazato, H.

T. Ichinose, S. Yoshida, K. Hiyoshi, K. Sadakane, H. Takano, M. Nishikawa, I. Mori, R. Yanagisawa, H. Kawazato, A. Yasuda, and T. Shibamoto, “The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation,” Arch. Environ. Contam. Toxicol.55(3), 348–357 (2008).
[CrossRef] [PubMed]

Kaye, P. H.

A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8μm in urban and tropical rainforest locations,” Atmos. Chem. Phys.11(11), 5491–5504 (2011).
[CrossRef]

A. M. Gabey, M. W. Gallagher, J. Whitehead, J. Dorsey, P. H. Kaye, and W. R. Stanley, “Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual-channel fluorescence aerosol spectrometer,” Atmos. Chem. Phys.10(10), 4453–4466 (2010).
[CrossRef]

P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express13(10), 3583–3593 (2005).
[CrossRef] [PubMed]

Kerechanin, C.

S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011).
[CrossRef]

Keskinen, J.

Khovratovich, N. N.

A. V. Ignatenko, B. A. Tatarinov, N. N. Khovratovich, V. P. Khrapovitskii, and S. N. Cherenkevich, “Spectral-fluorescent investigation of the action of ozone on aromatic amino acids,” J. Appl. Spectrosc.37(1), 781–784 (1982).

Khrapovitskii, V. P.

A. V. Ignatenko, B. A. Tatarinov, N. N. Khovratovich, V. P. Khrapovitskii, and S. N. Cherenkevich, “Spectral-fluorescent investigation of the action of ozone on aromatic amino acids,” J. Appl. Spectrosc.37(1), 781–784 (1982).

Kim, J. G.

J. G. Kim and A. E. Yousef, “Inactivation kinetics of foodborne spoilage and pathogenic bacteria by ozone,” J. Food Sci.65(3), 521–528 (2000).
[CrossRef]

Knight, R.

R. M. Bowers, A. P. Sullivan, E. K. Costello, J. L. Collett, R. Knight, and N. Fierer, “Sources of bacteria in outdoor air across cities in the midwestern united states,” Appl. Environ. Microbiol.77(18), 6350–6356 (2011).
[CrossRef] [PubMed]

R. M. Bowers, C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, and N. Fierer, “Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei,” Appl. Environ. Microbiol.75(15), 5121–5130 (2009).
[CrossRef] [PubMed]

Kobayashi, K.

K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010).
[CrossRef]

Koop, T.

M. Shiraiwa, M. Ammann, T. Koop, and U. Pöschl, “Gas uptake and chemical aging of semisolid organic aerosol particles,” Proc. Natl. Acad. Sci. U.S.A.108(27), 11003–11008 (2011).
[CrossRef] [PubMed]

Kostiainen, R.

T. Kotiaho, M. N. Eberlin, P. Vainiotalo, and R. Kostiainen, “Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides,” J. Am. Soc. Mass Spectrom.11(6), 526–535 (2000).
[CrossRef] [PubMed]

Kotiaho, T.

T. Kotiaho, M. N. Eberlin, P. Vainiotalo, and R. Kostiainen, “Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides,” J. Am. Soc. Mass Spectrom.11(6), 526–535 (2000).
[CrossRef] [PubMed]

Krumins, V.

V. Krumins, E.-K. Son, G. Mainelis, and D. E. Fennell, “Retention of Inactivated Bioaerosols and Ethene in a Rotating Gioreactor Constructed for Bioaerosol Activity Studies,” Clean36(7), 593–600 (2008).

Kulaga, H.

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdes, and H. Kulaga, “Aerosol Characteristics in a Subway Environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

Lauber, C. L.

R. M. Bowers, C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, and N. Fierer, “Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei,” Appl. Environ. Microbiol.75(15), 5121–5130 (2009).
[CrossRef] [PubMed]

Leavitt, R.

J. B. Mudd, R. Leavitt, A. Ongun, and T. T. McManus, “Reaction of ozone with amino acids and proteins,” Atmos. Environ.3(6), 669–681 (1969).
[CrossRef] [PubMed]

Leh, F.

J. B. Mudd, F. Leh, and T. T. McManus, “Reaction of Ozone with Nicotinamide and its Derivatives,” Arch. Biochem. Biophys.161(2), 408–419 (1974).
[CrossRef] [PubMed]

Levine, R. L.

B. S. Berlett, R. L. Levine, and E. R. Stadtman, “Comparison of the effects of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin,” J. Biol. Chem.271(8), 4177–4182 (1996).
[CrossRef] [PubMed]

Li, R.

J. L. Santarpia, R. Gasparini, R. Li, and D. R. Collins, “Diurnal variations in the hygroscopic growth cycles of ambient aerosol populations,” J. Geophys. Res.110(D3), D03206 (2005).
[CrossRef]

Lin, H.-B.

Liu, F. P.

J. B. Mudd, P. J. Dawson, S. Tseng, and F. P. Liu, “Reaction of ozone with protein tryptophans: band III, serum albumin, and cytochrome C,” Arch. Biochem. Biophys.338(2), 143–149 (1997).
[CrossRef] [PubMed]

Mainelis, G.

V. Krumins, E.-K. Son, G. Mainelis, and D. E. Fennell, “Retention of Inactivated Bioaerosols and Ethene in a Rotating Gioreactor Constructed for Bioaerosol Activity Studies,” Clean36(7), 593–600 (2008).

Manninen, A.

Marjamäki, M.

Mathison, G.

J. M. Prospero, E. Blades, G. Mathison, and R. Naidu, “Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust,” Aerobiologia21(1), 1–19 (2005).
[CrossRef]

Mayo, M. W.

McKee, L.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. L. Santarpia, N. Baker, B. Alvarez, S. Ratnesar-Shumate, B. Cottrell, and L. McKee, “Fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric processing,” Proc. SPIE8018, 801804, 801804-7 (2011).
[CrossRef]

McManus, T. T.

J. B. Mudd, F. Leh, and T. T. McManus, “Reaction of Ozone with Nicotinamide and its Derivatives,” Arch. Biochem. Biophys.161(2), 408–419 (1974).
[CrossRef] [PubMed]

J. B. Mudd, R. Leavitt, A. Ongun, and T. T. McManus, “Reaction of ozone with amino acids and proteins,” Atmos. Environ.3(6), 669–681 (1969).
[CrossRef] [PubMed]

Melnikova, E. V.

V. V. Roshchina and E. V. Melnikova, “Pollen chemosensitivity to ozone and peroxides,” Russ. J. Plant Physiol.48(1), 74–83 (2001).
[CrossRef]

Mentel, T. F.

Y. Rudich, N. M. Donahue, and T. F. Mentel, “Aging of organic aerosol: bridging the gap between laboratory and field studies,” Annu. Rev. Phys. Chem.58(1), 321–352 (2007).
[CrossRef] [PubMed]

Mitsumoto, K.

K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010).
[CrossRef]

Morawska, L.

H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: Influence of fungal spore age and air exposure,” J. Aerosol Sci.38(1), 83–96 (2007).
[CrossRef]

V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci.34(12), 1711–1727 (2003).
[CrossRef]

Mori, I.

T. Ichinose, S. Yoshida, K. Hiyoshi, K. Sadakane, H. Takano, M. Nishikawa, I. Mori, R. Yanagisawa, H. Kawazato, A. Yasuda, and T. Shibamoto, “The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation,” Arch. Environ. Contam. Toxicol.55(3), 348–357 (2008).
[CrossRef] [PubMed]

Mudd, J. B.

J. B. Mudd, P. J. Dawson, S. Tseng, and F. P. Liu, “Reaction of ozone with protein tryptophans: band III, serum albumin, and cytochrome C,” Arch. Biochem. Biophys.338(2), 143–149 (1997).
[CrossRef] [PubMed]

J. B. Mudd, F. Leh, and T. T. McManus, “Reaction of Ozone with Nicotinamide and its Derivatives,” Arch. Biochem. Biophys.161(2), 408–419 (1974).
[CrossRef] [PubMed]

J. B. Mudd, R. Leavitt, A. Ongun, and T. T. McManus, “Reaction of ozone with amino acids and proteins,” Atmos. Environ.3(6), 669–681 (1969).
[CrossRef] [PubMed]

Nachman, P.

Naidu, R.

J. M. Prospero, E. Blades, G. Mathison, and R. Naidu, “Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust,” Aerobiologia21(1), 1–19 (2005).
[CrossRef]

Nash, T.

F. A. Dark and T. Nash, “Comparative toxicity of various ozonized olefins to bacteria suspended in air,” J. Hyg. (Lond.)68(2), 245–252 (1970).
[CrossRef] [PubMed]

Newbury, N. R.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

Niles, S.

S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J.-P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B72(4), 449–454 (2001).
[CrossRef]

Nishikawa, M.

T. Ichinose, S. Yoshida, K. Hiyoshi, K. Sadakane, H. Takano, M. Nishikawa, I. Mori, R. Yanagisawa, H. Kawazato, A. Yasuda, and T. Shibamoto, “The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation,” Arch. Environ. Contam. Toxicol.55(3), 348–357 (2008).
[CrossRef] [PubMed]

Ongun, A.

J. B. Mudd, R. Leavitt, A. Ongun, and T. T. McManus, “Reaction of ozone with amino acids and proteins,” Atmos. Environ.3(6), 669–681 (1969).
[CrossRef] [PubMed]

Pan, Y. L.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. L. Santarpia, N. Baker, B. Alvarez, S. Ratnesar-Shumate, B. Cottrell, and L. McKee, “Fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric processing,” Proc. SPIE8018, 801804, 801804-7 (2011).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Particle-fluorescence spectrometer for real-time single-particle measurements of atmospheric organic carbon and biological aerosol,” Environ. Sci. Technol.43(2), 429–434 (2009).
[CrossRef] [PubMed]

R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA; measurement and classification of single particles containing organic carbon,” Atmos. Environ.38(11), 1657–1672 (2004).
[CrossRef]

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol.37(8), 628–639 (2003).
[CrossRef]

S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J.-P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B72(4), 449–454 (2001).
[CrossRef]

Pan, Y.-L.

Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res.112(D24), D24S19 (2007).
[CrossRef]

Pickersgill, D. A.

J. Fröhlich-Nowoisky, D. A. Pickersgill, V. R. Després, and U. Pöschl, “High diversity of fungi in air particulate matter,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12814–12819 (2009).
[CrossRef] [PubMed]

Pinnick, R. G.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. L. Santarpia, N. Baker, B. Alvarez, S. Ratnesar-Shumate, B. Cottrell, and L. McKee, “Fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric processing,” Proc. SPIE8018, 801804, 801804-7 (2011).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Particle-fluorescence spectrometer for real-time single-particle measurements of atmospheric organic carbon and biological aerosol,” Environ. Sci. Technol.43(2), 429–434 (2009).
[CrossRef] [PubMed]

Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res.112(D24), D24S19 (2007).
[CrossRef]

R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA; measurement and classification of single particles containing organic carbon,” Atmos. Environ.38(11), 1657–1672 (2004).
[CrossRef]

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol.37(8), 628–639 (2003).
[CrossRef]

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J.-P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B72(4), 449–454 (2001).
[CrossRef]

S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, P. Nachman, G. Chen, R. K. Chang, M. W. Mayo, and G. L. Fernandez, “Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles,” Appl. Opt.34(30), 7149–7155 (1995).
[CrossRef] [PubMed]

Pöhlker, C.

C. Pöhlker, J. A. Huffman, and U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. Discuss.4(5), 5857–5933 (2011).
[CrossRef]

Poschl, U.

V. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andraea, U. Poschl, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(15598), 1–58 (2012).

J. A. Huffman, B. Treutlein, and U. Poschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys.10(7), 3215–3233 (2010).
[CrossRef]

W. Elbert, P. E. Taylor, M. O. Andreae, and U. Poschl, “Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions,” Atmos. Chem. Phys.7(17), 4569–4588 (2007).
[CrossRef]

Pöschl, U.

M. Shiraiwa, M. Ammann, T. Koop, and U. Pöschl, “Gas uptake and chemical aging of semisolid organic aerosol particles,” Proc. Natl. Acad. Sci. U.S.A.108(27), 11003–11008 (2011).
[CrossRef] [PubMed]

C. Pöhlker, J. A. Huffman, and U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. Discuss.4(5), 5857–5933 (2011).
[CrossRef]

J. Fröhlich-Nowoisky, D. A. Pickersgill, V. R. Després, and U. Pöschl, “High diversity of fungi in air particulate matter,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12814–12819 (2009).
[CrossRef] [PubMed]

Primmerman, C. A.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

Proescher, A.

S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011).
[CrossRef]

Prospero, J. M.

J. M. Prospero, E. Blades, G. Mathison, and R. Naidu, “Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust,” Aerobiologia21(1), 1–19 (2005).
[CrossRef]

Pryor, W. A.

W. A. Pryor, G. L. Squadrito, and M. Friedman, “The cascade mechanism to explain ozone toxicity: the role of lipid ozonation products,” Free Radic. Biol. Med.19(6), 935–941 (1995).
[CrossRef] [PubMed]

W. A. Pryor and R. M. Uppu, “A kinetic model for the competitive reactions of ozone with amino acid residues in proteins in reverse micelles,” J. Biol. Chem.268(5), 3120–3126 (1993).
[PubMed]

W. A. Pryor, “How far does ozone penetrate into the pulmonary air/tissue boundary before it reacts?” Free Radic. Biol. Med.12(1), 83–88 (1992).
[CrossRef] [PubMed]

Putkiranta, M.

Quant, F. R.

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci.28(3), 471–482 (1997).
[CrossRef] [PubMed]

Quizon, J.

S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011).
[CrossRef]

Quizon, R.

S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011).
[CrossRef]

Ratnesar-Shumate, S.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. L. Santarpia, N. Baker, B. Alvarez, S. Ratnesar-Shumate, B. Cottrell, and L. McKee, “Fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric processing,” Proc. SPIE8018, 801804, 801804-7 (2011).
[CrossRef]

Ratnesar-Shumate, S. R.

S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011).
[CrossRef]

Reid, C. R.

R. L. Gruel, C. R. Reid, and R. T. Allemann, “The optimum rate of drum rotation for aerosol aging,” J. Aerosol Sci.18(1), 17–22 (1987).
[CrossRef]

Reyes, F. L.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

Richardson, J. M.

D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE97(6), 971–989 (2009).
[CrossRef]

Ristovski, Z.

H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: Influence of fungal spore age and air exposure,” J. Aerosol Sci.38(1), 83–96 (2007).
[CrossRef]

V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci.34(12), 1711–1727 (2003).
[CrossRef]

Roselle, D. C.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and Fluorescence Measurements for Field Detection of Biological Aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999).
[CrossRef]

Rosen, J. M.

Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res.112(D24), D24S19 (2007).
[CrossRef]

Roshchina, V. V.

V. V. Roshchina, “Autofluorescence of plant secreting cells as a biosensor and bioindicator reaction,” J. Fluoresc.13(5), 403–420 (2003).
[CrossRef]

V. V. Roshchina and E. V. Melnikova, “Pollen chemosensitivity to ozone and peroxides,” Russ. J. Plant Physiol.48(1), 74–83 (2001).
[CrossRef]

Rostedt, A.

Rowe, G. S.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

Rudich, Y.

Y. Rudich, N. M. Donahue, and T. F. Mentel, “Aging of organic aerosol: bridging the gap between laboratory and field studies,” Annu. Rev. Phys. Chem.58(1), 321–352 (2007).
[CrossRef] [PubMed]

Saarela, J.

Sadakane, K.

T. Ichinose, S. Yoshida, K. Hiyoshi, K. Sadakane, H. Takano, M. Nishikawa, I. Mori, R. Yanagisawa, H. Kawazato, A. Yasuda, and T. Shibamoto, “The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation,” Arch. Environ. Contam. Toxicol.55(3), 348–357 (2008).
[CrossRef] [PubMed]

Safatov, A. S.

V. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andraea, U. Poschl, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(15598), 1–58 (2012).

Sanchez, A.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

Santarpia, J. L.

S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. L. Santarpia, N. Baker, B. Alvarez, S. Ratnesar-Shumate, B. Cottrell, and L. McKee, “Fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric processing,” Proc. SPIE8018, 801804, 801804-7 (2011).
[CrossRef]

J. L. Santarpia, R. Gasparini, R. Li, and D. R. Collins, “Diurnal variations in the hygroscopic growth cycles of ambient aerosol populations,” J. Geophys. Res.110(D3), D03206 (2005).
[CrossRef]

Sawyer, W. D.

W. D. Sawyer, J. V. Jemski, A. L. Hogge, H. T. Eigelsbach, E. K. Wolfe, H. G. Dangerfield, W. S. Gochenour, and D. Crozier, “Effect of Aerosol Age on the Infectivity of Airborne Pasteurella tularensis for Macaca mulatta and Man,” J. Bacteriol.91(6), 2180–2184 (1966).
[PubMed]

Scotto, C.

Seaver, M.

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdes, and H. Kulaga, “Aerosol Characteristics in a Subway Environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and Fluorescence Measurements for Field Detection of Biological Aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999).
[CrossRef]

Selma, M. V.

M. V. Selma, A. M. Ibáñez, M. Cantwell, and T. Suslow, “Reduction by gaseous ozone of salmonella and microbial flora associated with fresh-cut cantaloupe,” Food Microbiol.25(4), 558–565 (2008).
[CrossRef] [PubMed]

Shatz, M. P.

D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE97(6), 971–989 (2009).
[CrossRef]

Shibamoto, T.

T. Ichinose, S. Yoshida, K. Hiyoshi, K. Sadakane, H. Takano, M. Nishikawa, I. Mori, R. Yanagisawa, H. Kawazato, A. Yasuda, and T. Shibamoto, “The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation,” Arch. Environ. Contam. Toxicol.55(3), 348–357 (2008).
[CrossRef] [PubMed]

Shiraiwa, M.

M. Shiraiwa, M. Ammann, T. Koop, and U. Pöschl, “Gas uptake and chemical aging of semisolid organic aerosol particles,” Proc. Natl. Acad. Sci. U.S.A.108(27), 11003–11008 (2011).
[CrossRef] [PubMed]

Sivaprakasam, V.

Snyder, A. P.

A. Tripathi, R. E. Jabbour, J. A. Guicheteau, S. D. Christesen, D. K. Emge, A. W. Fountain, J. R. Bottiger, E. D. Emmons, and A. P. Snyder, “Bioaerosol analysis with raman chemical imaging microspectroscopy,” Anal. Chem.81(16), 6981–6990 (2009).
[CrossRef] [PubMed]

Son, E.-K.

V. Krumins, E.-K. Son, G. Mainelis, and D. E. Fennell, “Retention of Inactivated Bioaerosols and Ethene in a Rotating Gioreactor Constructed for Bioaerosol Activity Studies,” Clean36(7), 593–600 (2008).

Song, J.

L. Fan, J. Song, P. D. Hildebrand, and C. F. Forney, “Interaction of ozone and negative air ions to control micro-organisms,” J. Appl. Microbiol.93(1), 144–148 (2002).
[CrossRef] [PubMed]

Sorvajärvi, T.

Squadrito, G. L.

W. A. Pryor, G. L. Squadrito, and M. Friedman, “The cascade mechanism to explain ozone toxicity: the role of lipid ozonation products,” Free Radic. Biol. Med.19(6), 935–941 (1995).
[CrossRef] [PubMed]

Stadtman, E. R.

B. S. Berlett, R. L. Levine, and E. R. Stadtman, “Comparison of the effects of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin,” J. Biol. Chem.271(8), 4177–4182 (1996).
[CrossRef] [PubMed]

Stanley, W. R.

A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8μm in urban and tropical rainforest locations,” Atmos. Chem. Phys.11(11), 5491–5504 (2011).
[CrossRef]

A. M. Gabey, M. W. Gallagher, J. Whitehead, J. Dorsey, P. H. Kaye, and W. R. Stanley, “Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual-channel fluorescence aerosol spectrometer,” Atmos. Chem. Phys.10(10), 4453–4466 (2010).
[CrossRef]

P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express13(10), 3583–3593 (2005).
[CrossRef] [PubMed]

Sullivan, A. P.

R. M. Bowers, A. P. Sullivan, E. K. Costello, J. L. Collett, R. Knight, and N. Fierer, “Sources of bacteria in outdoor air across cities in the midwestern united states,” Appl. Environ. Microbiol.77(18), 6350–6356 (2011).
[CrossRef] [PubMed]

Sun, J. M.

J. M. Sun and P. A. Ariya, “Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review,” Atmos. Environ.40(5), 795–820 (2006).
[CrossRef]

Suslow, T.

M. V. Selma, A. M. Ibáñez, M. Cantwell, and T. Suslow, “Reduction by gaseous ozone of salmonella and microbial flora associated with fresh-cut cantaloupe,” Food Microbiol.25(4), 558–565 (2008).
[CrossRef] [PubMed]

Takano, H.

T. Ichinose, S. Yoshida, K. Hiyoshi, K. Sadakane, H. Takano, M. Nishikawa, I. Mori, R. Yanagisawa, H. Kawazato, A. Yasuda, and T. Shibamoto, “The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation,” Arch. Environ. Contam. Toxicol.55(3), 348–357 (2008).
[CrossRef] [PubMed]

Tatarinov, B. A.

A. V. Ignatenko, B. A. Tatarinov, N. N. Khovratovich, V. P. Khrapovitskii, and S. N. Cherenkevich, “Spectral-fluorescent investigation of the action of ozone on aromatic amino acids,” J. Appl. Spectrosc.37(1), 781–784 (1982).

Taylor, P. E.

W. Elbert, P. E. Taylor, M. O. Andreae, and U. Poschl, “Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions,” Atmos. Chem. Phys.7(17), 4569–4588 (2007).
[CrossRef]

Thompson, K.-A.

K.-A. Thompson, A. M. Bennett, and J. T. Walker, “Aerosol survival of Staphylococcus epidermidis,” J. Hosp. Infect.78(3), 216–220 (2011).
[CrossRef] [PubMed]

Toivonen, J.

Treutlein, B.

J. A. Huffman, B. Treutlein, and U. Poschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys.10(7), 3215–3233 (2010).
[CrossRef]

Tripathi, A.

A. Tripathi, R. E. Jabbour, J. A. Guicheteau, S. D. Christesen, D. K. Emge, A. W. Fountain, J. R. Bottiger, E. D. Emmons, and A. P. Snyder, “Bioaerosol analysis with raman chemical imaging microspectroscopy,” Anal. Chem.81(16), 6981–6990 (2009).
[CrossRef] [PubMed]

Tseng, S.

J. B. Mudd, P. J. Dawson, S. Tseng, and F. P. Liu, “Reaction of ozone with protein tryptophans: band III, serum albumin, and cytochrome C,” Arch. Biochem. Biophys.338(2), 143–149 (1997).
[CrossRef] [PubMed]

Uppu, R. M.

W. A. Pryor and R. M. Uppu, “A kinetic model for the competitive reactions of ozone with amino acid residues in proteins in reverse micelles,” J. Biol. Chem.268(5), 3120–3126 (1993).
[PubMed]

Vainiotalo, P.

T. Kotiaho, M. N. Eberlin, P. Vainiotalo, and R. Kostiainen, “Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides,” J. Am. Soc. Mass Spectrom.11(6), 526–535 (2000).
[CrossRef] [PubMed]

Valdes, E.

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdes, and H. Kulaga, “Aerosol Characteristics in a Subway Environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

Van Gieson, E.

S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011).
[CrossRef]

Wagner, M. L.

S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011).
[CrossRef]

Walker, J. T.

K.-A. Thompson, A. M. Bennett, and J. T. Walker, “Aerosol survival of Staphylococcus epidermidis,” J. Hosp. Infect.78(3), 216–220 (2011).
[CrossRef] [PubMed]

Watkins, H. M. S.

L. J. Goldberg, H. M. S. Watkins, E. E. Boerke, and M. A. Chatigny, “The use of a rotating drum for the study of aerosols over extended periods of time,” Am. J. Hyg.68(1), 85–93 (1958).
[PubMed]

Whitehead, J.

A. M. Gabey, M. W. Gallagher, J. Whitehead, J. Dorsey, P. H. Kaye, and W. R. Stanley, “Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual-channel fluorescence aerosol spectrometer,” Atmos. Chem. Phys.10(10), 4453–4466 (2010).
[CrossRef]

Wiedinmyer, C.

R. M. Bowers, C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, and N. Fierer, “Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei,” Appl. Environ. Microbiol.75(15), 5121–5130 (2009).
[CrossRef] [PubMed]

Wolf, J.-P.

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J.-P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B72(4), 449–454 (2001).
[CrossRef]

Wolfe, E. K.

W. D. Sawyer, J. V. Jemski, A. L. Hogge, H. T. Eigelsbach, E. K. Wolfe, H. G. Dangerfield, W. S. Gochenour, and D. Crozier, “Effect of Aerosol Age on the Infectivity of Airborne Pasteurella tularensis for Macaca mulatta and Man,” J. Bacteriol.91(6), 2180–2184 (1966).
[PubMed]

Yabusaki, K.

K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010).
[CrossRef]

Yanagisawa, R.

T. Ichinose, S. Yoshida, K. Hiyoshi, K. Sadakane, H. Takano, M. Nishikawa, I. Mori, R. Yanagisawa, H. Kawazato, A. Yasuda, and T. Shibamoto, “The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation,” Arch. Environ. Contam. Toxicol.55(3), 348–357 (2008).
[CrossRef] [PubMed]

Yasuda, A.

T. Ichinose, S. Yoshida, K. Hiyoshi, K. Sadakane, H. Takano, M. Nishikawa, I. Mori, R. Yanagisawa, H. Kawazato, A. Yasuda, and T. Shibamoto, “The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation,” Arch. Environ. Contam. Toxicol.55(3), 348–357 (2008).
[CrossRef] [PubMed]

Yoshida, S.

T. Ichinose, S. Yoshida, K. Hiyoshi, K. Sadakane, H. Takano, M. Nishikawa, I. Mori, R. Yanagisawa, H. Kawazato, A. Yasuda, and T. Shibamoto, “The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation,” Arch. Environ. Contam. Toxicol.55(3), 348–357 (2008).
[CrossRef] [PubMed]

Young, A.

R. Bailey, L. Fielding, A. Young, and C. Griffith, “Effect of Ozone and Open Air Factor against Aerosolized Micrococcus luteus,” J. Food Prot.70(12), 2769–2773 (2007).
[PubMed]

Yousef, A. E.

J. G. Kim and A. E. Yousef, “Inactivation kinetics of foodborne spoilage and pathogenic bacteria by ozone,” J. Food Sci.65(3), 521–528 (2000).
[CrossRef]

Aerobiologia (2)

K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010).
[CrossRef]

J. M. Prospero, E. Blades, G. Mathison, and R. Naidu, “Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust,” Aerobiologia21(1), 1–19 (2005).
[CrossRef]

Aerosol Sci. Technol. (4)

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and Fluorescence Measurements for Field Detection of Biological Aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999).
[CrossRef]

Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol.37(8), 628–639 (2003).
[CrossRef]

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdes, and H. Kulaga, “Aerosol Characteristics in a Subway Environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

S. R. Ratnesar-Shumate, M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia, “Improved method for the evaluation of real-time biological aerosol detection technologies,” Aerosol Sci. Technol.45(5), 635–644 (2011).
[CrossRef]

Am. J. Hyg. (1)

L. J. Goldberg, H. M. S. Watkins, E. E. Boerke, and M. A. Chatigny, “The use of a rotating drum for the study of aerosols over extended periods of time,” Am. J. Hyg.68(1), 85–93 (1958).
[PubMed]

Anal. Chem. (1)

A. Tripathi, R. E. Jabbour, J. A. Guicheteau, S. D. Christesen, D. K. Emge, A. W. Fountain, J. R. Bottiger, E. D. Emmons, and A. P. Snyder, “Bioaerosol analysis with raman chemical imaging microspectroscopy,” Anal. Chem.81(16), 6981–6990 (2009).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

Y. Rudich, N. M. Donahue, and T. F. Mentel, “Aging of organic aerosol: bridging the gap between laboratory and field studies,” Annu. Rev. Phys. Chem.58(1), 321–352 (2007).
[CrossRef] [PubMed]

Appl. Environ. Microbiol. (2)

R. M. Bowers, A. P. Sullivan, E. K. Costello, J. L. Collett, R. Knight, and N. Fierer, “Sources of bacteria in outdoor air across cities in the midwestern united states,” Appl. Environ. Microbiol.77(18), 6350–6356 (2011).
[CrossRef] [PubMed]

R. M. Bowers, C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, and N. Fierer, “Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei,” Appl. Environ. Microbiol.75(15), 5121–5130 (2009).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J.-P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B72(4), 449–454 (2001).
[CrossRef]

Arch. Biochem. Biophys. (2)

J. B. Mudd, P. J. Dawson, S. Tseng, and F. P. Liu, “Reaction of ozone with protein tryptophans: band III, serum albumin, and cytochrome C,” Arch. Biochem. Biophys.338(2), 143–149 (1997).
[CrossRef] [PubMed]

J. B. Mudd, F. Leh, and T. T. McManus, “Reaction of Ozone with Nicotinamide and its Derivatives,” Arch. Biochem. Biophys.161(2), 408–419 (1974).
[CrossRef] [PubMed]

Arch. Environ. Contam. Toxicol. (1)

T. Ichinose, S. Yoshida, K. Hiyoshi, K. Sadakane, H. Takano, M. Nishikawa, I. Mori, R. Yanagisawa, H. Kawazato, A. Yasuda, and T. Shibamoto, “The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation,” Arch. Environ. Contam. Toxicol.55(3), 348–357 (2008).
[CrossRef] [PubMed]

Atmos. Chem. Phys. (4)

A. M. Gabey, M. W. Gallagher, J. Whitehead, J. Dorsey, P. H. Kaye, and W. R. Stanley, “Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual-channel fluorescence aerosol spectrometer,” Atmos. Chem. Phys.10(10), 4453–4466 (2010).
[CrossRef]

A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8μm in urban and tropical rainforest locations,” Atmos. Chem. Phys.11(11), 5491–5504 (2011).
[CrossRef]

W. Elbert, P. E. Taylor, M. O. Andreae, and U. Poschl, “Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions,” Atmos. Chem. Phys.7(17), 4569–4588 (2007).
[CrossRef]

J. A. Huffman, B. Treutlein, and U. Poschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys.10(7), 3215–3233 (2010).
[CrossRef]

Atmos. Environ. (3)

J. B. Mudd, R. Leavitt, A. Ongun, and T. T. McManus, “Reaction of ozone with amino acids and proteins,” Atmos. Environ.3(6), 669–681 (1969).
[CrossRef] [PubMed]

R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA; measurement and classification of single particles containing organic carbon,” Atmos. Environ.38(11), 1657–1672 (2004).
[CrossRef]

J. M. Sun and P. A. Ariya, “Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review,” Atmos. Environ.40(5), 795–820 (2006).
[CrossRef]

Atmos. Meas. Tech. Discuss. (1)

C. Pöhlker, J. A. Huffman, and U. Pöschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech. Discuss.4(5), 5857–5933 (2011).
[CrossRef]

Clean (1)

V. Krumins, E.-K. Son, G. Mainelis, and D. E. Fennell, “Retention of Inactivated Bioaerosols and Ethene in a Rotating Gioreactor Constructed for Bioaerosol Activity Studies,” Clean36(7), 593–600 (2008).

Environ. Sci. Technol. (1)

Y. L. Pan, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Particle-fluorescence spectrometer for real-time single-particle measurements of atmospheric organic carbon and biological aerosol,” Environ. Sci. Technol.43(2), 429–434 (2009).
[CrossRef] [PubMed]

Eur. J. Biochem. (1)

E. Fujimori, “Changes induced by ozone and ultraviolet light in type I collagen. Bovine Achilles tendon collagen versus rat tail tendon collagen,” Eur. J. Biochem.152(2), 299–306 (1985).
[CrossRef] [PubMed]

Field Anal. Chem. Technol. (1)

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

Food Microbiol. (1)

M. V. Selma, A. M. Ibáñez, M. Cantwell, and T. Suslow, “Reduction by gaseous ozone of salmonella and microbial flora associated with fresh-cut cantaloupe,” Food Microbiol.25(4), 558–565 (2008).
[CrossRef] [PubMed]

Free Radic. Biol. Med. (2)

W. A. Pryor, “How far does ozone penetrate into the pulmonary air/tissue boundary before it reacts?” Free Radic. Biol. Med.12(1), 83–88 (1992).
[CrossRef] [PubMed]

W. A. Pryor, G. L. Squadrito, and M. Friedman, “The cascade mechanism to explain ozone toxicity: the role of lipid ozonation products,” Free Radic. Biol. Med.19(6), 935–941 (1995).
[CrossRef] [PubMed]

J. Aerosol Sci. (4)

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci.28(3), 471–482 (1997).
[CrossRef] [PubMed]

H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: Influence of fungal spore age and air exposure,” J. Aerosol Sci.38(1), 83–96 (2007).
[CrossRef]

V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci.34(12), 1711–1727 (2003).
[CrossRef]

R. L. Gruel, C. R. Reid, and R. T. Allemann, “The optimum rate of drum rotation for aerosol aging,” J. Aerosol Sci.18(1), 17–22 (1987).
[CrossRef]

J. Am. Soc. Mass Spectrom. (1)

T. Kotiaho, M. N. Eberlin, P. Vainiotalo, and R. Kostiainen, “Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides,” J. Am. Soc. Mass Spectrom.11(6), 526–535 (2000).
[CrossRef] [PubMed]

J. Appl. Microbiol. (1)

L. Fan, J. Song, P. D. Hildebrand, and C. F. Forney, “Interaction of ozone and negative air ions to control micro-organisms,” J. Appl. Microbiol.93(1), 144–148 (2002).
[CrossRef] [PubMed]

J. Appl. Spectrosc. (2)

A. V. Ignatenko, B. A. Tatarinov, N. N. Khovratovich, V. P. Khrapovitskii, and S. N. Cherenkevich, “Spectral-fluorescent investigation of the action of ozone on aromatic amino acids,” J. Appl. Spectrosc.37(1), 781–784 (1982).

A. V. Ignatenko, “Use of the method of tryptophan fluorescence to characterize disruptions of the structure of ozonized proteins,” J. Appl. Spectrosc.49(1), 691–695 (1988).
[CrossRef]

J. Bacteriol. (1)

W. D. Sawyer, J. V. Jemski, A. L. Hogge, H. T. Eigelsbach, E. K. Wolfe, H. G. Dangerfield, W. S. Gochenour, and D. Crozier, “Effect of Aerosol Age on the Infectivity of Airborne Pasteurella tularensis for Macaca mulatta and Man,” J. Bacteriol.91(6), 2180–2184 (1966).
[PubMed]

J. Biol. Chem. (2)

B. S. Berlett, R. L. Levine, and E. R. Stadtman, “Comparison of the effects of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin,” J. Biol. Chem.271(8), 4177–4182 (1996).
[CrossRef] [PubMed]

W. A. Pryor and R. M. Uppu, “A kinetic model for the competitive reactions of ozone with amino acid residues in proteins in reverse micelles,” J. Biol. Chem.268(5), 3120–3126 (1993).
[PubMed]

J. Fluoresc. (1)

V. V. Roshchina, “Autofluorescence of plant secreting cells as a biosensor and bioindicator reaction,” J. Fluoresc.13(5), 403–420 (2003).
[CrossRef]

J. Food Prot. (1)

R. Bailey, L. Fielding, A. Young, and C. Griffith, “Effect of Ozone and Open Air Factor against Aerosolized Micrococcus luteus,” J. Food Prot.70(12), 2769–2773 (2007).
[PubMed]

J. Food Sci. (1)

J. G. Kim and A. E. Yousef, “Inactivation kinetics of foodborne spoilage and pathogenic bacteria by ozone,” J. Food Sci.65(3), 521–528 (2000).
[CrossRef]

J. Geophys. Res. (2)

Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res.112(D24), D24S19 (2007).
[CrossRef]

J. L. Santarpia, R. Gasparini, R. Li, and D. R. Collins, “Diurnal variations in the hygroscopic growth cycles of ambient aerosol populations,” J. Geophys. Res.110(D3), D03206 (2005).
[CrossRef]

J. Hosp. Infect. (1)

K.-A. Thompson, A. M. Bennett, and J. T. Walker, “Aerosol survival of Staphylococcus epidermidis,” J. Hosp. Infect.78(3), 216–220 (2011).
[CrossRef] [PubMed]

J. Hyg. (Lond.) (1)

F. A. Dark and T. Nash, “Comparative toxicity of various ozonized olefins to bacteria suspended in air,” J. Hyg. (Lond.)68(2), 245–252 (1970).
[CrossRef] [PubMed]

Opt. Express (4)

Proc. IEEE (1)

D. P. Greenwood, T. H. Jeys, B. Johnson, J. M. Richardson, and M. P. Shatz, “Optical Techniques for Detecting and Identifying Biological-Warfare Agents,” Proc. IEEE97(6), 971–989 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

J. Fröhlich-Nowoisky, D. A. Pickersgill, V. R. Després, and U. Pöschl, “High diversity of fungi in air particulate matter,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12814–12819 (2009).
[CrossRef] [PubMed]

M. Shiraiwa, M. Ammann, T. Koop, and U. Pöschl, “Gas uptake and chemical aging of semisolid organic aerosol particles,” Proc. Natl. Acad. Sci. U.S.A.108(27), 11003–11008 (2011).
[CrossRef] [PubMed]

Proc. SPIE (1)

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. L. Santarpia, N. Baker, B. Alvarez, S. Ratnesar-Shumate, B. Cottrell, and L. McKee, “Fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric processing,” Proc. SPIE8018, 801804, 801804-7 (2011).
[CrossRef]

Russ. J. Plant Physiol. (1)

V. V. Roshchina and E. V. Melnikova, “Pollen chemosensitivity to ozone and peroxides,” Russ. J. Plant Physiol.48(1), 74–83 (2001).
[CrossRef]

Tellus B Chem. Phys. Meterol. (1)

V. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andraea, U. Poschl, and R. Jaenicke, “Primary biological aerosol particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(15598), 1–58 (2012).

Other (3)

J. Ho, and Y-W., December 23, 1997 (Filed March 19, 1996). Fluorescent biological particle detection system. United States patent 5,701,012.

B. Lighthart and A. J. Mohr, eds., Atmospheric Microbial Aerosols (Chapman & Hall, 1994).

R. DeFreez, “LIF bio-aerosol threat triggers: then and now,” Proc. SPIE 7484, 74840H (15 pp.)(2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the bioaerosol generator; ozone generator, monitor and controller; laboratory reaction chamber (rotating drum); single-particle fluorescence spectrometer (SPFS) for in situ measurement of UV-LIF spectra of single aerosol particles; and UVAPS for measurement of particle size and 351-nm excited total fluorescence. (b) Schematic of the rotating drum. The scale of the axel relative that of the drum is exaggerated to show the details of the air and aerosol flow paths, and different monitors.

Fig. 2
Fig. 2

(a) Decay of aerosol concentration in the prototype rotating drum. The test articles are Arizona Test Dust. (b) Integrated particle number concentration of MS2 aerosol measured Oct. 21, 2010, where each is the mean of 10-second samples taken in the time period beginning at the listed time

Fig. 3
Fig. 3

Fluorescence spectra of Y. rohdei and MS2 particles. (a) 24 single-shot UV-LIF spectra from individual aerosol particles which contain Y. rohdei. Each spectrum is excited by a single pulse from a 263-nm-wavelength laser. The particle sizes are mostly in the size range of 1–3 µm. (b) 24 single-shot UV-LIF spectra from individual aerosol particles which contain MS2. (c) As in (b) but after 1 hr treatment with ozone with RH = 43%. (d) Averages of 100 spectra of particles untreated (black) or treated with ozone for the times indicated (red, blue) for Y. rohdei. (e) Averages of 100 spectra of particles untreated (black) or treated with ozone for the times indicated (red, blue) for MS2 at 38% RH. (f) As in (e) but with RH = 43%.

Fig. 4
Fig. 4

Average fluorescence intensity (dashed lines) and number concentrations (solid lines) of particles in different size bins, before and after exposure to ozone with two different air humidities (RH). Measurements were made using the UVAPS. The particles are made from the MS2 preparations. The ozone concentration and exposure time are indicated at the left corner.

Fig. 5
Fig. 5

Left column: Ratio of fluorescence peak intensity between 330 nm and 420 nm (red, cross) and the concentration of ozone (blue, circles) varies with the time exposure to ozone for (a) Y. rohdei, (b) MS2 at RH 38%, and (c) MS2 at HR 43%. Right column: Ratio of fluorescence plotted vs the exposure to ozone for (d) Y. rohdei; (e) MS2 at 38% avg RH; and (f) MS2 at 43% avg RH. The red vertical line indicates the exposure = 0.6, the maximum exposure allowed by the US EPA for an 8 hr period.

Metrics