Abstract

A new approach for filtering an optical band-pass in optical amplifier is proposed using a macro bending. The proposed filter leverages the bending loss of higher order modes at shorter wavelengths. At longer wavelengths, the filter increases fiber’s bending loss as the fundamental mode ‘tail’ is leak out from the cladding. The combination of wavelength dependent loss at longer and shorter wavelength gives rise to the optical band-pass filter characteristic inside the fiber. The simulated spectral response of the filter is found to be in good agreement with the experimental results. Subsequently, the proposed optical band-pass filter is applied in Thulium-doped fiber amplifiers (TDFA) system for gain and noise figure enhancements. The filter functions to suppress both the amplified spontaneous emission (ASE) at 800 nm and 1800 nm wavelength regions and thus improves both gain and noise figure performances in S-band region. By bending of the gain medium, gain and noise figure of the TDFA are improved by about 2 dB and 0.5 dB respectively, within a wavelength region from 1440 and 1500 nm when the 1050 nm pump power is fixed at 250 mW.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Riza and S. Sumriddetchkajorn, “Fault-tolerant dense multiwavelength add-drop filter with a two-dimensional digital micromirror device,” Appl. Opt.37(27), 6355–6361 (1998).
    [CrossRef] [PubMed]
  2. D. S. Ferreira, J. Mirkovic, R. F. Wolffenbuttel, J. H. Correia, M. S. Feld, and G. Minas, “Narrow-band pass filter array for integrated opto-electronic spectroscopy detectors to assess esophageal tissue,” Biomed. Opt. Express2(6), 1703–1716 (2011).
    [CrossRef] [PubMed]
  3. S. H. Yun, B. W. Lee, H. K. Kim, and B. Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett.11(10), 1229–1231 (1999).
    [CrossRef]
  4. M. S. Yataki, D. N. Payne, and M. P. Varnham, “All-fiber wavelength filters using concatenated fused-taper couplers,” Electron. Lett.21(6), 248–249 (1985).
    [CrossRef]
  5. R. Zengerle and O. G. Leminger, “Wavelength-selective directional coupler made of nonidentical single-mode fibers,” J. Lightwave Technol.4(7), 823–827 (1986).
    [CrossRef]
  6. K. Okamoto and J. Noda, “Fiber-optic spectral filter consisting of concatenated dual-core fibers,” Optical Fiber Communication Conference (OFC), Atlanta, Georgia (February 24, 1986).
  7. A. Safaai-Jazi and J. C. Mckeeman, “All-fiber spectral filters with nonperiodic bandpass characteristics and high extinction ratios in the wavelength range 0.8 Mu-M Less-Than Lambda Less-Than 1.6 Mu-M,” J. Lightwave Technol.9, 959–963 (1991).
    [CrossRef]
  8. N. Imoto, “An analysis for contradirectional-coupler-type optical grating filters,” J. Lightwave Technol.3(4), 895–900 (1985).
    [CrossRef]
  9. W. P. Huang and J. Hong, “A coupled-waveguide grating resonator filter,” IEEE Photon. Technol. Lett.4(8), 884–886 (1992).
    [CrossRef]
  10. K. W. Cheung, D. A. Smith, J. E. Baran, and J. J. Johnson, “1 Gb/S System performance of an integrated, polarization-independent, acoustically-tunable optical filter,” IEEE Photon. Technol. Lett.2(4), 271–273 (1990).
    [CrossRef]
  11. Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett.92(19), 191112 (2008).
    [CrossRef]
  12. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56, 703–717 (1977).
  13. A. B. Sharma, A. H. Al-Ani, and S. J. Halme, “Constant-curvature loss in monomode fibers: an experimental investigation,” Appl. Opt.23(19), 3297–3301 (1984).
    [CrossRef] [PubMed]
  14. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, NY, 1997).
  15. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron.43(10), 899–909 (2007).
    [CrossRef]
  16. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. B66(3), 216–220 (1976).
    [CrossRef]
  17. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am.66(4), 311–320 (1976).
    [CrossRef]
  18. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, NY, 1982).
  19. J. J. R., “Optical fiber communication system comprising mode-stripping means,” US patent (1990).
  20. M. Bigot-Astruc, D. Molin, P. Nouchi, P. Matthijsse, L. De Montmorillon, Y. Lumineau, I. Flammer, P. Sillard, and F. Gooijer, “Single mode optical fiber with low bending losses,” European Patent (2006).
  21. C. HI1060, “Single-mode component fiber for high performance photonic applications,” (2003).
  22. S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. H. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach,” Laser Phys.18(11), 1362–1364 (2008).
    [CrossRef]
  23. S. A. Daud, S. D. Emami, K. S. Mohamed, H. A. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Shorter wavelength gain shift In EDFA Using a macro-bending approach,” 2008 IEEE Photonicsglobal@Singapore (Ipgc), Vols 1 and 2, 412–414 (2008).
  24. M. Z. Zulkifli, M. H. Jemangin, S. W. Harun, and H. Ahmad, “Gain-flattened S-band depressed cladding erbium doped fiber amplifier with a flat bandwidth of 12 nm using a Tunable Mach-Zehnder Filter,” Laser Phys.21(9), 1633–1637 (2011).
    [CrossRef]
  25. M. Foroni, F. Poli, A. Cucinotta, and S. Selleri, “S-band depressed-cladding erbium-doped fiber amplifier with double-pass configuration,” Opt. Lett.31(22), 3228–3230 (2006).
    [CrossRef] [PubMed]
  26. P. R. Watekar, S. Ju, and W. T. Han, “A small-signal power model for Tm-doped silica-glass optical fiber amplifier,” IEEE Photon. Technol. Lett.18(19), 2035–2037 (2006).
    [CrossRef]
  27. R. M. Percival, “Highly efficient 1.064 μm upconversion pumped 1.47 μm thulium doped fluoride fibre laser,” Electron. Lett.30, 1684–1685 (1994).
    [CrossRef]
  28. P. R. Watekar, S. Ju, and W. T. Han, “Analysis of 1064-nm pumped Tm-doped silica glass fiber amplifier operating at 1470 nm,” J. Lightwave Technol.25(4), 1045–1052 (2007).
    [CrossRef]
  29. B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+:3H4 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids353(29), 2767–2773 (2007).
    [CrossRef]
  30. B. Faure, W. Blanc, B. Dussardier, G. Monnom, and P. Peterka, “Thulium-doped silica-fiber based S-band amplifier with increased efficiency by aluminum co-doping,” Optical Amplifiers and Their Applications Conference, San Francisco, California (2004).
  31. P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
    [CrossRef]
  32. J. Michael and F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (CRC Press, 2001).
  33. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, NY, 1994).
  34. S. S. H. Yam and J. Kim, “Ground state absorption in thulium-doped fiber amplifier: Experiment and modeling,” IEEE J. Sel. Top. Quantum Electron.12(4), 797–803 (2006).
    [CrossRef]
  35. Y. Yano and T. Ono, “1.49-μm-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems,” J. Lightwave Technol.20(10), 1826–1838 (2002).
    [CrossRef]

2011

D. S. Ferreira, J. Mirkovic, R. F. Wolffenbuttel, J. H. Correia, M. S. Feld, and G. Minas, “Narrow-band pass filter array for integrated opto-electronic spectroscopy detectors to assess esophageal tissue,” Biomed. Opt. Express2(6), 1703–1716 (2011).
[CrossRef] [PubMed]

M. Z. Zulkifli, M. H. Jemangin, S. W. Harun, and H. Ahmad, “Gain-flattened S-band depressed cladding erbium doped fiber amplifier with a flat bandwidth of 12 nm using a Tunable Mach-Zehnder Filter,” Laser Phys.21(9), 1633–1637 (2011).
[CrossRef]

2008

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett.92(19), 191112 (2008).
[CrossRef]

S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. H. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach,” Laser Phys.18(11), 1362–1364 (2008).
[CrossRef]

2007

P. R. Watekar, S. Ju, and W. T. Han, “Analysis of 1064-nm pumped Tm-doped silica glass fiber amplifier operating at 1470 nm,” J. Lightwave Technol.25(4), 1045–1052 (2007).
[CrossRef]

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+:3H4 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids353(29), 2767–2773 (2007).
[CrossRef]

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron.43(10), 899–909 (2007).
[CrossRef]

2006

M. Foroni, F. Poli, A. Cucinotta, and S. Selleri, “S-band depressed-cladding erbium-doped fiber amplifier with double-pass configuration,” Opt. Lett.31(22), 3228–3230 (2006).
[CrossRef] [PubMed]

P. R. Watekar, S. Ju, and W. T. Han, “A small-signal power model for Tm-doped silica-glass optical fiber amplifier,” IEEE Photon. Technol. Lett.18(19), 2035–2037 (2006).
[CrossRef]

S. S. H. Yam and J. Kim, “Ground state absorption in thulium-doped fiber amplifier: Experiment and modeling,” IEEE J. Sel. Top. Quantum Electron.12(4), 797–803 (2006).
[CrossRef]

2004

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

2002

1999

S. H. Yun, B. W. Lee, H. K. Kim, and B. Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett.11(10), 1229–1231 (1999).
[CrossRef]

1998

1994

R. M. Percival, “Highly efficient 1.064 μm upconversion pumped 1.47 μm thulium doped fluoride fibre laser,” Electron. Lett.30, 1684–1685 (1994).
[CrossRef]

1992

W. P. Huang and J. Hong, “A coupled-waveguide grating resonator filter,” IEEE Photon. Technol. Lett.4(8), 884–886 (1992).
[CrossRef]

1991

A. Safaai-Jazi and J. C. Mckeeman, “All-fiber spectral filters with nonperiodic bandpass characteristics and high extinction ratios in the wavelength range 0.8 Mu-M Less-Than Lambda Less-Than 1.6 Mu-M,” J. Lightwave Technol.9, 959–963 (1991).
[CrossRef]

1990

K. W. Cheung, D. A. Smith, J. E. Baran, and J. J. Johnson, “1 Gb/S System performance of an integrated, polarization-independent, acoustically-tunable optical filter,” IEEE Photon. Technol. Lett.2(4), 271–273 (1990).
[CrossRef]

1986

R. Zengerle and O. G. Leminger, “Wavelength-selective directional coupler made of nonidentical single-mode fibers,” J. Lightwave Technol.4(7), 823–827 (1986).
[CrossRef]

1985

M. S. Yataki, D. N. Payne, and M. P. Varnham, “All-fiber wavelength filters using concatenated fused-taper couplers,” Electron. Lett.21(6), 248–249 (1985).
[CrossRef]

N. Imoto, “An analysis for contradirectional-coupler-type optical grating filters,” J. Lightwave Technol.3(4), 895–900 (1985).
[CrossRef]

1984

1977

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56, 703–717 (1977).

1976

D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. B66(3), 216–220 (1976).
[CrossRef]

D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am.66(4), 311–320 (1976).
[CrossRef]

Abdul-Rashid, H. H.

S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. H. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach,” Laser Phys.18(11), 1362–1364 (2008).
[CrossRef]

Ahmad, H.

M. Z. Zulkifli, M. H. Jemangin, S. W. Harun, and H. Ahmad, “Gain-flattened S-band depressed cladding erbium doped fiber amplifier with a flat bandwidth of 12 nm using a Tunable Mach-Zehnder Filter,” Laser Phys.21(9), 1633–1637 (2011).
[CrossRef]

S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. H. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach,” Laser Phys.18(11), 1362–1364 (2008).
[CrossRef]

Al-Ani, A. H.

Aminudin, L.

S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. H. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach,” Laser Phys.18(11), 1362–1364 (2008).
[CrossRef]

Bai, J.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett.92(19), 191112 (2008).
[CrossRef]

Baran, J. E.

K. W. Cheung, D. A. Smith, J. E. Baran, and J. J. Johnson, “1 Gb/S System performance of an integrated, polarization-independent, acoustically-tunable optical filter,” IEEE Photon. Technol. Lett.2(4), 271–273 (1990).
[CrossRef]

Blanc, W.

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+:3H4 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids353(29), 2767–2773 (2007).
[CrossRef]

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Cheung, K. W.

K. W. Cheung, D. A. Smith, J. E. Baran, and J. J. Johnson, “1 Gb/S System performance of an integrated, polarization-independent, acoustically-tunable optical filter,” IEEE Photon. Technol. Lett.2(4), 271–273 (1990).
[CrossRef]

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron.43(10), 899–909 (2007).
[CrossRef]

Correia, J. H.

Cucinotta, A.

Daud, S. A.

S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. H. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach,” Laser Phys.18(11), 1362–1364 (2008).
[CrossRef]

Dussardier, B.

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+:3H4 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids353(29), 2767–2773 (2007).
[CrossRef]

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Emami, S. D.

S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. H. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach,” Laser Phys.18(11), 1362–1364 (2008).
[CrossRef]

Faure, B.

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+:3H4 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids353(29), 2767–2773 (2007).
[CrossRef]

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Feld, M. S.

Ferreira, D. S.

Foroni, M.

Halme, S. J.

Han, W. T.

P. R. Watekar, S. Ju, and W. T. Han, “Analysis of 1064-nm pumped Tm-doped silica glass fiber amplifier operating at 1470 nm,” J. Lightwave Technol.25(4), 1045–1052 (2007).
[CrossRef]

P. R. Watekar, S. Ju, and W. T. Han, “A small-signal power model for Tm-doped silica-glass optical fiber amplifier,” IEEE Photon. Technol. Lett.18(19), 2035–2037 (2006).
[CrossRef]

Harun, S. W.

M. Z. Zulkifli, M. H. Jemangin, S. W. Harun, and H. Ahmad, “Gain-flattened S-band depressed cladding erbium doped fiber amplifier with a flat bandwidth of 12 nm using a Tunable Mach-Zehnder Filter,” Laser Phys.21(9), 1633–1637 (2011).
[CrossRef]

S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. H. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach,” Laser Phys.18(11), 1362–1364 (2008).
[CrossRef]

Hong, J.

W. P. Huang and J. Hong, “A coupled-waveguide grating resonator filter,” IEEE Photon. Technol. Lett.4(8), 884–886 (1992).
[CrossRef]

Hou, C. L.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett.92(19), 191112 (2008).
[CrossRef]

Huang, W. P.

W. P. Huang and J. Hong, “A coupled-waveguide grating resonator filter,” IEEE Photon. Technol. Lett.4(8), 884–886 (1992).
[CrossRef]

Imoto, N.

N. Imoto, “An analysis for contradirectional-coupler-type optical grating filters,” J. Lightwave Technol.3(4), 895–900 (1985).
[CrossRef]

Jemangin, M. H.

M. Z. Zulkifli, M. H. Jemangin, S. W. Harun, and H. Ahmad, “Gain-flattened S-band depressed cladding erbium doped fiber amplifier with a flat bandwidth of 12 nm using a Tunable Mach-Zehnder Filter,” Laser Phys.21(9), 1633–1637 (2011).
[CrossRef]

Johnson, J. J.

K. W. Cheung, D. A. Smith, J. E. Baran, and J. J. Johnson, “1 Gb/S System performance of an integrated, polarization-independent, acoustically-tunable optical filter,” IEEE Photon. Technol. Lett.2(4), 271–273 (1990).
[CrossRef]

Ju, S.

P. R. Watekar, S. Ju, and W. T. Han, “Analysis of 1064-nm pumped Tm-doped silica glass fiber amplifier operating at 1470 nm,” J. Lightwave Technol.25(4), 1045–1052 (2007).
[CrossRef]

P. R. Watekar, S. Ju, and W. T. Han, “A small-signal power model for Tm-doped silica-glass optical fiber amplifier,” IEEE Photon. Technol. Lett.18(19), 2035–2037 (2006).
[CrossRef]

Karasek, M.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Kim, B. Y.

S. H. Yun, B. W. Lee, H. K. Kim, and B. Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett.11(10), 1229–1231 (1999).
[CrossRef]

Kim, H. K.

S. H. Yun, B. W. Lee, H. K. Kim, and B. Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett.11(10), 1229–1231 (1999).
[CrossRef]

Kim, J.

S. S. H. Yam and J. Kim, “Ground state absorption in thulium-doped fiber amplifier: Experiment and modeling,” IEEE J. Sel. Top. Quantum Electron.12(4), 797–803 (2006).
[CrossRef]

Lee, B. W.

S. H. Yun, B. W. Lee, H. K. Kim, and B. Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett.11(10), 1229–1231 (1999).
[CrossRef]

Leminger, O. G.

R. Zengerle and O. G. Leminger, “Wavelength-selective directional coupler made of nonidentical single-mode fibers,” J. Lightwave Technol.4(7), 823–827 (1986).
[CrossRef]

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56, 703–717 (1977).

D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. B66(3), 216–220 (1976).
[CrossRef]

D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am.66(4), 311–320 (1976).
[CrossRef]

Mckeeman, J. C.

A. Safaai-Jazi and J. C. Mckeeman, “All-fiber spectral filters with nonperiodic bandpass characteristics and high extinction ratios in the wavelength range 0.8 Mu-M Less-Than Lambda Less-Than 1.6 Mu-M,” J. Lightwave Technol.9, 959–963 (1991).
[CrossRef]

Minas, G.

Mirkovic, J.

Mohamed, K. S.

S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. H. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach,” Laser Phys.18(11), 1362–1364 (2008).
[CrossRef]

Mokhtar, M. R.

S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. H. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach,” Laser Phys.18(11), 1362–1364 (2008).
[CrossRef]

Monnom, G.

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+:3H4 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids353(29), 2767–2773 (2007).
[CrossRef]

Ono, T.

Payne, D. N.

M. S. Yataki, D. N. Payne, and M. P. Varnham, “All-fiber wavelength filters using concatenated fused-taper couplers,” Electron. Lett.21(6), 248–249 (1985).
[CrossRef]

Percival, R. M.

R. M. Percival, “Highly efficient 1.064 μm upconversion pumped 1.47 μm thulium doped fluoride fibre laser,” Electron. Lett.30, 1684–1685 (1994).
[CrossRef]

Peterka, P.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Poli, F.

Rahman, F. A.

S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. H. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach,” Laser Phys.18(11), 1362–1364 (2008).
[CrossRef]

Riza, N. A.

Safaai-Jazi, A.

A. Safaai-Jazi and J. C. Mckeeman, “All-fiber spectral filters with nonperiodic bandpass characteristics and high extinction ratios in the wavelength range 0.8 Mu-M Less-Than Lambda Less-Than 1.6 Mu-M,” J. Lightwave Technol.9, 959–963 (1991).
[CrossRef]

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron.43(10), 899–909 (2007).
[CrossRef]

Selleri, S.

Sharma, A. B.

Smith, D. A.

K. W. Cheung, D. A. Smith, J. E. Baran, and J. J. Johnson, “1 Gb/S System performance of an integrated, polarization-independent, acoustically-tunable optical filter,” IEEE Photon. Technol. Lett.2(4), 271–273 (1990).
[CrossRef]

Sumriddetchkajorn, S.

Varnham, M. P.

M. S. Yataki, D. N. Payne, and M. P. Varnham, “All-fiber wavelength filters using concatenated fused-taper couplers,” Electron. Lett.21(6), 248–249 (1985).
[CrossRef]

Watekar, P. R.

P. R. Watekar, S. Ju, and W. T. Han, “Analysis of 1064-nm pumped Tm-doped silica glass fiber amplifier operating at 1470 nm,” J. Lightwave Technol.25(4), 1045–1052 (2007).
[CrossRef]

P. R. Watekar, S. Ju, and W. T. Han, “A small-signal power model for Tm-doped silica-glass optical fiber amplifier,” IEEE Photon. Technol. Lett.18(19), 2035–2037 (2006).
[CrossRef]

Wolffenbuttel, R. F.

Wu, Y.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett.92(19), 191112 (2008).
[CrossRef]

Yam, S. S. H.

S. S. H. Yam and J. Kim, “Ground state absorption in thulium-doped fiber amplifier: Experiment and modeling,” IEEE J. Sel. Top. Quantum Electron.12(4), 797–803 (2006).
[CrossRef]

Yang, G. G.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett.92(19), 191112 (2008).
[CrossRef]

Yano, Y.

Yataki, M. S.

M. S. Yataki, D. N. Payne, and M. P. Varnham, “All-fiber wavelength filters using concatenated fused-taper couplers,” Electron. Lett.21(6), 248–249 (1985).
[CrossRef]

Yun, S. H.

S. H. Yun, B. W. Lee, H. K. Kim, and B. Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett.11(10), 1229–1231 (1999).
[CrossRef]

Yusoff, N. M.

S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. H. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach,” Laser Phys.18(11), 1362–1364 (2008).
[CrossRef]

Yusoff, Z.

S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. H. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach,” Laser Phys.18(11), 1362–1364 (2008).
[CrossRef]

Zeng, X.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett.92(19), 191112 (2008).
[CrossRef]

Zengerle, R.

R. Zengerle and O. G. Leminger, “Wavelength-selective directional coupler made of nonidentical single-mode fibers,” J. Lightwave Technol.4(7), 823–827 (1986).
[CrossRef]

Zulkifli, M. Z.

M. Z. Zulkifli, M. H. Jemangin, S. W. Harun, and H. Ahmad, “Gain-flattened S-band depressed cladding erbium doped fiber amplifier with a flat bandwidth of 12 nm using a Tunable Mach-Zehnder Filter,” Laser Phys.21(9), 1633–1637 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. Wu, X. Zeng, C. L. Hou, J. Bai, and G. G. Yang, “A tunable all-fiber filter based on microfiber loop resonator,” Appl. Phys. Lett.92(19), 191112 (2008).
[CrossRef]

Bell Syst. Tech. J.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56, 703–717 (1977).

Biomed. Opt. Express

Electron. Lett.

M. S. Yataki, D. N. Payne, and M. P. Varnham, “All-fiber wavelength filters using concatenated fused-taper couplers,” Electron. Lett.21(6), 248–249 (1985).
[CrossRef]

R. M. Percival, “Highly efficient 1.064 μm upconversion pumped 1.47 μm thulium doped fluoride fibre laser,” Electron. Lett.30, 1684–1685 (1994).
[CrossRef]

IEEE J. Quantum Electron.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron.43(10), 899–909 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. S. H. Yam and J. Kim, “Ground state absorption in thulium-doped fiber amplifier: Experiment and modeling,” IEEE J. Sel. Top. Quantum Electron.12(4), 797–803 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

P. R. Watekar, S. Ju, and W. T. Han, “A small-signal power model for Tm-doped silica-glass optical fiber amplifier,” IEEE Photon. Technol. Lett.18(19), 2035–2037 (2006).
[CrossRef]

S. H. Yun, B. W. Lee, H. K. Kim, and B. Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters,” IEEE Photon. Technol. Lett.11(10), 1229–1231 (1999).
[CrossRef]

W. P. Huang and J. Hong, “A coupled-waveguide grating resonator filter,” IEEE Photon. Technol. Lett.4(8), 884–886 (1992).
[CrossRef]

K. W. Cheung, D. A. Smith, J. E. Baran, and J. J. Johnson, “1 Gb/S System performance of an integrated, polarization-independent, acoustically-tunable optical filter,” IEEE Photon. Technol. Lett.2(4), 271–273 (1990).
[CrossRef]

J. Lightwave Technol.

A. Safaai-Jazi and J. C. Mckeeman, “All-fiber spectral filters with nonperiodic bandpass characteristics and high extinction ratios in the wavelength range 0.8 Mu-M Less-Than Lambda Less-Than 1.6 Mu-M,” J. Lightwave Technol.9, 959–963 (1991).
[CrossRef]

N. Imoto, “An analysis for contradirectional-coupler-type optical grating filters,” J. Lightwave Technol.3(4), 895–900 (1985).
[CrossRef]

R. Zengerle and O. G. Leminger, “Wavelength-selective directional coupler made of nonidentical single-mode fibers,” J. Lightwave Technol.4(7), 823–827 (1986).
[CrossRef]

Y. Yano and T. Ono, “1.49-μm-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems,” J. Lightwave Technol.20(10), 1826–1838 (2002).
[CrossRef]

P. R. Watekar, S. Ju, and W. T. Han, “Analysis of 1064-nm pumped Tm-doped silica glass fiber amplifier operating at 1470 nm,” J. Lightwave Technol.25(4), 1045–1052 (2007).
[CrossRef]

J. Non-Cryst. Solids

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+:3H4 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids353(29), 2767–2773 (2007).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. B66(3), 216–220 (1976).
[CrossRef]

Laser Phys.

S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. H. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach,” Laser Phys.18(11), 1362–1364 (2008).
[CrossRef]

M. Z. Zulkifli, M. H. Jemangin, S. W. Harun, and H. Ahmad, “Gain-flattened S-band depressed cladding erbium doped fiber amplifier with a flat bandwidth of 12 nm using a Tunable Mach-Zehnder Filter,” Laser Phys.21(9), 1633–1637 (2011).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fibre amplifiers,” Opt. Quantum Electron.36(1-3), 201–212 (2004).
[CrossRef]

Other

J. Michael and F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (CRC Press, 2001).

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, NY, 1994).

S. A. Daud, S. D. Emami, K. S. Mohamed, H. A. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, and F. A. Rahman, “Shorter wavelength gain shift In EDFA Using a macro-bending approach,” 2008 IEEE Photonicsglobal@Singapore (Ipgc), Vols 1 and 2, 412–414 (2008).

B. Faure, W. Blanc, B. Dussardier, G. Monnom, and P. Peterka, “Thulium-doped silica-fiber based S-band amplifier with increased efficiency by aluminum co-doping,” Optical Amplifiers and Their Applications Conference, San Francisco, California (2004).

D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, NY, 1982).

J. J. R., “Optical fiber communication system comprising mode-stripping means,” US patent (1990).

M. Bigot-Astruc, D. Molin, P. Nouchi, P. Matthijsse, L. De Montmorillon, Y. Lumineau, I. Flammer, P. Sillard, and F. Gooijer, “Single mode optical fiber with low bending losses,” European Patent (2006).

C. HI1060, “Single-mode component fiber for high performance photonic applications,” (2003).

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, NY, 1997).

K. Okamoto and J. Noda, “Fiber-optic spectral filter consisting of concatenated dual-core fibers,” Optical Fiber Communication Conference (OFC), Atlanta, Georgia (February 24, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Band-pass filter mechanism using fiber bending.

Fig. 2
Fig. 2

Transversal mode field distribution. (a) LP01, straight fiber at 1800 nm (b) LP01, bent fiber at 1800 nm (c) LP01, straight fiber at 1460 nm (d) LP01, bent fiber at 1460 nm (e) LP11, straight fiber at 800 nm, (f) LP11, bent fiber at 800 nm.

Fig. 3
Fig. 3

a) 800 nm mode field intensity for LP01 (b) 800 nm mode field intensity for LP11.

Fig. 4
Fig. 4

Bend loss at 800nm, 1460 and 1800 nm wavelengs.

Fig. 5
Fig. 5

Criteria mapping for choosing fiber NA and core diameter for the optical band-pass filter.

Fig. 6
Fig. 6

a) Criteria mapping for high Pass wavelength 700-1000 (nm) range b) Fiber loss spectrum at selected point (NA = 0.14, core diameter 5.22 nm) with 14mm bending diameter and Fiber loss spectrum at low pass filter at different bending diameter c) spectral response of Corning HI1060 fiber.

Fig. 7
Fig. 7

Normalized excited state absorption, ground state absorption and emission.

Fig. 8
Fig. 8

Energy level diagram of Thulium ion showing (a) the absorption transitions for 1420 nm pump source (b) the absorption transitions for 1050 nm pump source (c) the absorption transitions for 1560 nm pump source (d) emission transitions (e) Configuration of TDFA.

Fig. 9
Fig. 9

(a) Criteria mapping for single mode at 1000 nm and multi-mode at 800 nm.(b) The bending loss as a function of wavelength for 10 mmbending radius at selected point ofA: NA = 0.1311, Core Diameter: 5, B: NA = 0.167, Core Diameter: 5, C: NA = 0.15, Core Diameter:6, D: NA = 0.0942, Core Diameter:7.5, E:NA = 0.116, Core Diameter:7.5, F: NA = 0.103, Core Diameter:8.4.

Fig. 10
Fig. 10

Experimental ASE spectrum at normal and bent conditions and fiber loss spectrum.

Fig. 11
Fig. 11

Gain and noise figure spectra with and without the macrobending effect. The input signal and pump power is fixed at –30 dBm and 250 mW, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

α(ν)= π k 2 exp[ 2 3 ( γ 3 β g 2 )R ] e v γ 2 3 V 2 R K v1 (γa) K v+1 (γa)
k= n 1 2 k 2 β g 2
γ= β g 2 n 2 2 k 2
n'= n material e ( x R ) n material ( 1+ x R )
n material = n [ 1( n 2 x 2R )[ P 12 v( P 11 + P 12 ) ] ]
n'=n( 1+ x R eff )
R ef R n 2 2 [ P 12 v( P 11 + P 12 ) ]

Metrics