Abstract

A low-power Faraday rotation spectroscopy system that uses permanent rare-earth magnets has been developed for detection of O2 at 762 nm. The experimental signals are generated using laser wavelength modulation combined with a balanced detection scheme that permits quantum shot noise limited performance. A noise equivalent polarization rotation angle of 8 × 10−8 rad/Hz1/2 is estimated from the experimental noise, and this agrees well with a theoretical model based on Jones calculus. A bandwidth normalized minimum detection limit to oxygen of 6 ppmv/Hz1/2 with an ultimate minimum of 1.3 ppmv at integration times of ~1 minute has been demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kocache, “The measurement of oxygen on gas mixtures,” J. Phys. E Sci. Instrum.19(6), 401–412 (1986).
    [CrossRef]
  2. B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol.24(1), 82–94 (2007).
    [CrossRef]
  3. R. F. Keeling, R. P. Najjar, M. L. Bender, and P. P. Tans, “What atmospheric oxygen measurements can tell us about the global carbon cycle,” Global Biogeochem. Cycles7(1), 37–67 (1993).
    [CrossRef]
  4. A. Pohlkötter, M. Köhring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors (Basel)10(9), 8466–8477 (2010).
    [CrossRef] [PubMed]
  5. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B78(3-4), 503–511 (2004).
    [CrossRef]
  6. P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001).
    [CrossRef]
  7. M. L. Bender, P. P. Tans, J. T. Ellis, J. Orchardo, and K. Habfast, “A high precision isotope ratio mass spectrometry method for measuring the O2/N2 ratio of air,” Geochim. Cosmochim. Acta58(21), 4751–4758 (1994).
    [CrossRef]
  8. A. C. Manning, R. F. Keeling, and J. P. Severinghaus, “Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer,” Global Biogeochem. Cycles13(4), 1107–1115 (1999).
    [CrossRef]
  9. R. F. Keeling, “Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air,” J. Atmos. Chem.7(2), 153–176 (1988).
    [CrossRef]
  10. H. Cattaneo, T. Laurila, and R. Hernberg, “Photoacoustic detection of oxygen using cantilever enhanced technique,” Appl. Phys. B85(2-3), 337–341 (2006).
    [CrossRef]
  11. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers,” Proc. Combust. Inst.30(1), 1611–1618 (2005).
    [CrossRef]
  12. B. B. Stephens, R. F. Keeling, and W. J. Paplawsky, “Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique,” Tellus B Chem. Phys. Meterol.55(4), 857–878 (2003).
    [CrossRef]
  13. R. D. Guy, M. L. Fogel, and J. A. Berry, “Photosynthetic fractionation of the stable isotopes of oxygen and carbon,” Plant Physiol.101(1), 37–47 (1993).
    [PubMed]
  14. J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).
    [CrossRef]
  15. D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser Photonics Rev.3(4), 343–354 (2009).
    [CrossRef]
  16. R. J. Brecha, L. M. Pedrotti, and D. Krause, “Magnetic rotation spectroscopy of molecular oxygen with a diode laser,” J. Opt. Soc. Am. B14(8), 1921–1930 (1997).
    [CrossRef]
  17. R. J. Brecha and L. M. Pedrotti, “Analysis of imperfect polarizer effects in magnetic rotation spectroscopy,” Opt. Express5(5), 101–113 (1999).
    [CrossRef] [PubMed]
  18. R. J. Brecha, “Noninvasive magnetometry based on magnetic rotation spectroscopy of oxygen,” Appl. Opt.37(21), 4834–4839 (1998).
    [CrossRef] [PubMed]
  19. S. G. So, E. Jeng, and G. Wysocki, “VCSEL-based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
    [CrossRef]
  20. T. A. Blake, C. Chackerian, and J. R. Podolske, “Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals,” Appl. Opt.35(6), 973–985 (1996).
    [CrossRef] [PubMed]
  21. G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
    [CrossRef]
  22. M. C. McCarthy, J. C. Bloch, and R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy: A sensitive and selective absorption scheme for paramagnetic molecules,” J. Chem. Phys.100(9), 6331–6346 (1994).
    [CrossRef]
  23. M. C. McCarthy and R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy of PdH, PdD, NiH, and CuH,” J. Chem. Phys.100(9), 6347–6358 (1994).
    [CrossRef]
  24. J. M. Smith, J. C. Bloch, R. W. Field, and J. I. Steinfeld, “Trace detection of NO2 by frequency modulation enhanced magnetic rotation spectroscopy,” J. Opt. Soc. Am. B12(6), 964–969 (1995).
    [CrossRef]
  25. Y. Wang, M. Nikodem, J. Hoyne, and G. Wysocki, “Heterodyne-enhanced Faraday rotation spectrometer,” M. Razeghi, E. Tournie, and G. J. Brown, eds. (SPIE, San Francisco, California, USA, 2012), pp. 82682F–82688.
  26. J. A. Silver, “Simple dense-pattern optical multipass cells,” Appl. Opt.44(31), 6545–6556 (2005).
    [CrossRef] [PubMed]
  27. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am.31(7), 488–493 (1941).
    [CrossRef]
  28. X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: a Jones matrix analysis,” J. Opt. Soc. Am. B7(8), 1673–1684 (1990).
    [CrossRef]
  29. R. C. Jones, “A new calculus for the treatment of optical systems. IV,” J. Opt. Soc. Am.32(8), 486–493 (1942).
    [CrossRef]
  30. J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transf.111(16), 2415–2433 (2010).
    [CrossRef]
  31. H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
    [CrossRef]
  32. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 m by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
    [CrossRef] [PubMed]
  33. H. Adams, J. L. Hall, L. A. Russell, J. V. V. Kasper, F. K. Tittel, and R. F. Curl, “Color-center laser spectroscopy of transient species produced by excimer-laser flash photolysis,” J. Opt. Soc. Am. B2(5), 776–780 (1985).
    [CrossRef]
  34. S. So, O. Marchat, E. Jeng, and G. Wysocki, “Ultra-sensitive faraday rotation spectroscopy of O2: model vs. experiment,” in CLEO(Optical Society of America, San Jose, 2011), p. CThT2.
  35. D. J. Gauthier, P. Narum, and R. W. Boyd, “Simple, compact, high-performance permanent-magnet Faraday isolator,” Opt. Lett.11(10), 623–625 (1986).
    [CrossRef] [PubMed]
  36. E. A. Mironov, A. V. Voitovich, and O. V. Palashov, “Nonorthogonally magnetised permanent-magnet Faraday isolators,” Quantum Electron.41(1), 71–74 (2011).
    [CrossRef]

2011 (2)

S. G. So, E. Jeng, and G. Wysocki, “VCSEL-based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

E. A. Mironov, A. V. Voitovich, and O. V. Palashov, “Nonorthogonally magnetised permanent-magnet Faraday isolators,” Quantum Electron.41(1), 71–74 (2011).
[CrossRef]

2010 (3)

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transf.111(16), 2415–2433 (2010).
[CrossRef]

A. Pohlkötter, M. Köhring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors (Basel)10(9), 8466–8477 (2010).
[CrossRef] [PubMed]

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).
[CrossRef]

2009 (2)

D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser Photonics Rev.3(4), 343–354 (2009).
[CrossRef]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 m by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

2007 (1)

B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol.24(1), 82–94 (2007).
[CrossRef]

2006 (1)

H. Cattaneo, T. Laurila, and R. Hernberg, “Photoacoustic detection of oxygen using cantilever enhanced technique,” Appl. Phys. B85(2-3), 337–341 (2006).
[CrossRef]

2005 (2)

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers,” Proc. Combust. Inst.30(1), 1611–1618 (2005).
[CrossRef]

J. A. Silver, “Simple dense-pattern optical multipass cells,” Appl. Opt.44(31), 6545–6556 (2005).
[CrossRef] [PubMed]

2004 (1)

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B78(3-4), 503–511 (2004).
[CrossRef]

2003 (1)

B. B. Stephens, R. F. Keeling, and W. J. Paplawsky, “Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique,” Tellus B Chem. Phys. Meterol.55(4), 857–878 (2003).
[CrossRef]

2001 (1)

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001).
[CrossRef]

1999 (2)

A. C. Manning, R. F. Keeling, and J. P. Severinghaus, “Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer,” Global Biogeochem. Cycles13(4), 1107–1115 (1999).
[CrossRef]

R. J. Brecha and L. M. Pedrotti, “Analysis of imperfect polarizer effects in magnetic rotation spectroscopy,” Opt. Express5(5), 101–113 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

1996 (1)

1995 (1)

1994 (3)

M. L. Bender, P. P. Tans, J. T. Ellis, J. Orchardo, and K. Habfast, “A high precision isotope ratio mass spectrometry method for measuring the O2/N2 ratio of air,” Geochim. Cosmochim. Acta58(21), 4751–4758 (1994).
[CrossRef]

M. C. McCarthy, J. C. Bloch, and R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy: A sensitive and selective absorption scheme for paramagnetic molecules,” J. Chem. Phys.100(9), 6331–6346 (1994).
[CrossRef]

M. C. McCarthy and R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy of PdH, PdD, NiH, and CuH,” J. Chem. Phys.100(9), 6347–6358 (1994).
[CrossRef]

1993 (2)

R. D. Guy, M. L. Fogel, and J. A. Berry, “Photosynthetic fractionation of the stable isotopes of oxygen and carbon,” Plant Physiol.101(1), 37–47 (1993).
[PubMed]

R. F. Keeling, R. P. Najjar, M. L. Bender, and P. P. Tans, “What atmospheric oxygen measurements can tell us about the global carbon cycle,” Global Biogeochem. Cycles7(1), 37–67 (1993).
[CrossRef]

1990 (1)

1988 (1)

R. F. Keeling, “Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air,” J. Atmos. Chem.7(2), 153–176 (1988).
[CrossRef]

1986 (2)

1985 (1)

1984 (1)

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

1980 (1)

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

1942 (1)

1941 (1)

Adams, H.

H. Adams, J. L. Hall, L. A. Russell, J. V. V. Kasper, F. K. Tittel, and R. F. Curl, “Color-center laser spectroscopy of transient species produced by excimer-laser flash photolysis,” J. Opt. Soc. Am. B2(5), 776–780 (1985).
[CrossRef]

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

Axner, O.

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transf.111(16), 2415–2433 (2010).
[CrossRef]

Bakwin, P. S.

B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol.24(1), 82–94 (2007).
[CrossRef]

Baumann, D. D.

B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol.24(1), 82–94 (2007).
[CrossRef]

Bender, M. L.

M. L. Bender, P. P. Tans, J. T. Ellis, J. Orchardo, and K. Habfast, “A high precision isotope ratio mass spectrometry method for measuring the O2/N2 ratio of air,” Geochim. Cosmochim. Acta58(21), 4751–4758 (1994).
[CrossRef]

R. F. Keeling, R. P. Najjar, M. L. Bender, and P. P. Tans, “What atmospheric oxygen measurements can tell us about the global carbon cycle,” Global Biogeochem. Cycles7(1), 37–67 (1993).
[CrossRef]

Berry, J. A.

R. D. Guy, M. L. Fogel, and J. A. Berry, “Photosynthetic fractionation of the stable isotopes of oxygen and carbon,” Plant Physiol.101(1), 37–47 (1993).
[PubMed]

Blake, T. A.

Bloch, J. C.

J. M. Smith, J. C. Bloch, R. W. Field, and J. I. Steinfeld, “Trace detection of NO2 by frequency modulation enhanced magnetic rotation spectroscopy,” J. Opt. Soc. Am. B12(6), 964–969 (1995).
[CrossRef]

M. C. McCarthy, J. C. Bloch, and R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy: A sensitive and selective absorption scheme for paramagnetic molecules,” J. Chem. Phys.100(9), 6331–6346 (1994).
[CrossRef]

Boyd, R. W.

Brecha, R. J.

Cattaneo, H.

H. Cattaneo, T. Laurila, and R. Hernberg, “Photoacoustic detection of oxygen using cantilever enhanced technique,” Appl. Phys. B85(2-3), 337–341 (2006).
[CrossRef]

Chackerian, C.

Curl, J. R. F.

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

Curl, R. F.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 m by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

H. Adams, J. L. Hall, L. A. Russell, J. V. V. Kasper, F. K. Tittel, and R. F. Curl, “Color-center laser spectroscopy of transient species produced by excimer-laser flash photolysis,” J. Opt. Soc. Am. B2(5), 776–780 (1985).
[CrossRef]

Dion, C. M.

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transf.111(16), 2415–2433 (2010).
[CrossRef]

Doty, J. H.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 m by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Ebert, V.

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers,” Proc. Combust. Inst.30(1), 1611–1618 (2005).
[CrossRef]

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001).
[CrossRef]

Ellis, J. T.

M. L. Bender, P. P. Tans, J. T. Ellis, J. Orchardo, and K. Habfast, “A high precision isotope ratio mass spectrometry method for measuring the O2/N2 ratio of air,” Geochim. Cosmochim. Acta58(21), 4751–4758 (1994).
[CrossRef]

Field, R. W.

J. M. Smith, J. C. Bloch, R. W. Field, and J. I. Steinfeld, “Trace detection of NO2 by frequency modulation enhanced magnetic rotation spectroscopy,” J. Opt. Soc. Am. B12(6), 964–969 (1995).
[CrossRef]

M. C. McCarthy and R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy of PdH, PdD, NiH, and CuH,” J. Chem. Phys.100(9), 6347–6358 (1994).
[CrossRef]

M. C. McCarthy, J. C. Bloch, and R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy: A sensitive and selective absorption scheme for paramagnetic molecules,” J. Chem. Phys.100(9), 6331–6346 (1994).
[CrossRef]

Fogel, M. L.

R. D. Guy, M. L. Fogel, and J. A. Berry, “Photosynthetic fractionation of the stable isotopes of oxygen and carbon,” Plant Physiol.101(1), 37–47 (1993).
[PubMed]

Fried, A.

D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser Photonics Rev.3(4), 343–354 (2009).
[CrossRef]

Gauthier, D. J.

Guy, R. D.

R. D. Guy, M. L. Fogel, and J. A. Berry, “Photosynthetic fractionation of the stable isotopes of oxygen and carbon,” Plant Physiol.101(1), 37–47 (1993).
[PubMed]

Habfast, K.

M. L. Bender, P. P. Tans, J. T. Ellis, J. Orchardo, and K. Habfast, “A high precision isotope ratio mass spectrometry method for measuring the O2/N2 ratio of air,” Geochim. Cosmochim. Acta58(21), 4751–4758 (1994).
[CrossRef]

Hall, J. L.

Hanson, R. K.

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B78(3-4), 503–511 (2004).
[CrossRef]

Hernberg, R.

H. Cattaneo, T. Laurila, and R. Hernberg, “Photoacoustic detection of oxygen using cantilever enhanced technique,” Appl. Phys. B85(2-3), 337–341 (2006).
[CrossRef]

Herndon, S.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).
[CrossRef]

Jeffries, J. B.

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B78(3-4), 503–511 (2004).
[CrossRef]

Jeng, E.

S. G. So, E. Jeng, and G. Wysocki, “VCSEL-based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

Jones, R. C.

Kalkert, P.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

Kasper, J. V. V.

Keeling, R. F.

B. B. Stephens, R. F. Keeling, and W. J. Paplawsky, “Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique,” Tellus B Chem. Phys. Meterol.55(4), 857–878 (2003).
[CrossRef]

A. C. Manning, R. F. Keeling, and J. P. Severinghaus, “Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer,” Global Biogeochem. Cycles13(4), 1107–1115 (1999).
[CrossRef]

R. F. Keeling, R. P. Najjar, M. L. Bender, and P. P. Tans, “What atmospheric oxygen measurements can tell us about the global carbon cycle,” Global Biogeochem. Cycles7(1), 37–67 (1993).
[CrossRef]

R. F. Keeling, “Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air,” J. Atmos. Chem.7(2), 153–176 (1988).
[CrossRef]

Kluczynski, P.

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transf.111(16), 2415–2433 (2010).
[CrossRef]

Kocache, R.

R. Kocache, “The measurement of oxygen on gas mixtures,” J. Phys. E Sci. Instrum.19(6), 401–412 (1986).
[CrossRef]

Köhring, M.

A. Pohlkötter, M. Köhring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors (Basel)10(9), 8466–8477 (2010).
[CrossRef] [PubMed]

Kolb, T.

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers,” Proc. Combust. Inst.30(1), 1611–1618 (2005).
[CrossRef]

Krause, D.

Lathdavong, L.

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transf.111(16), 2415–2433 (2010).
[CrossRef]

Laurila, T.

H. Cattaneo, T. Laurila, and R. Hernberg, “Photoacoustic detection of oxygen using cantilever enhanced technique,” Appl. Phys. B85(2-3), 337–341 (2006).
[CrossRef]

Lewicki, R.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 m by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Litfin, G.

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

Liu, J. T. C.

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B78(3-4), 503–511 (2004).
[CrossRef]

Lundqvist, S.

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transf.111(16), 2415–2433 (2010).
[CrossRef]

Manning, A. C.

A. C. Manning, R. F. Keeling, and J. P. Severinghaus, “Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer,” Global Biogeochem. Cycles13(4), 1107–1115 (1999).
[CrossRef]

McCarthy, M. C.

M. C. McCarthy, J. C. Bloch, and R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy: A sensitive and selective absorption scheme for paramagnetic molecules,” J. Chem. Phys.100(9), 6331–6346 (1994).
[CrossRef]

M. C. McCarthy and R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy of PdH, PdD, NiH, and CuH,” J. Chem. Phys.100(9), 6347–6358 (1994).
[CrossRef]

McManus, J. B.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).
[CrossRef]

Mironov, E. A.

E. A. Mironov, A. V. Voitovich, and O. V. Palashov, “Nonorthogonally magnetised permanent-magnet Faraday isolators,” Quantum Electron.41(1), 71–74 (2011).
[CrossRef]

Najjar, R. P.

R. F. Keeling, R. P. Najjar, M. L. Bender, and P. P. Tans, “What atmospheric oxygen measurements can tell us about the global carbon cycle,” Global Biogeochem. Cycles7(1), 37–67 (1993).
[CrossRef]

Narum, P.

Nelson, J. D. D.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).
[CrossRef]

Orchardo, J.

M. L. Bender, P. P. Tans, J. T. Ellis, J. Orchardo, and K. Habfast, “A high precision isotope ratio mass spectrometry method for measuring the O2/N2 ratio of air,” Geochim. Cosmochim. Acta58(21), 4751–4758 (1994).
[CrossRef]

Palashov, O. V.

E. A. Mironov, A. V. Voitovich, and O. V. Palashov, “Nonorthogonally magnetised permanent-magnet Faraday isolators,” Quantum Electron.41(1), 71–74 (2011).
[CrossRef]

Paplawsky, W. J.

B. B. Stephens, R. F. Keeling, and W. J. Paplawsky, “Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique,” Tellus B Chem. Phys. Meterol.55(4), 857–878 (2003).
[CrossRef]

Pedrotti, L. M.

Podolske, J. R.

Pohlkötter, A.

A. Pohlkötter, M. Köhring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors (Basel)10(9), 8466–8477 (2010).
[CrossRef] [PubMed]

Pollock, C. R.

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

Reinert, D.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

Richter, D.

D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser Photonics Rev.3(4), 343–354 (2009).
[CrossRef]

Russell, L. A.

Schade, W.

A. Pohlkötter, M. Köhring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors (Basel)10(9), 8466–8477 (2010).
[CrossRef] [PubMed]

Seifert, H.

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers,” Proc. Combust. Inst.30(1), 1611–1618 (2005).
[CrossRef]

Severinghaus, J. P.

A. C. Manning, R. F. Keeling, and J. P. Severinghaus, “Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer,” Global Biogeochem. Cycles13(4), 1107–1115 (1999).
[CrossRef]

Shao, J.

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transf.111(16), 2415–2433 (2010).
[CrossRef]

Shorter, J. H.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).
[CrossRef]

Silver, J. A.

Simon, J. D.

Smith, J. M.

So, S. G.

S. G. So, E. Jeng, and G. Wysocki, “VCSEL-based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

Steinfeld, J. I.

Stephens, B. B.

B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol.24(1), 82–94 (2007).
[CrossRef]

B. B. Stephens, R. F. Keeling, and W. J. Paplawsky, “Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique,” Tellus B Chem. Phys. Meterol.55(4), 857–878 (2003).
[CrossRef]

Strauch, P.

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers,” Proc. Combust. Inst.30(1), 1611–1618 (2005).
[CrossRef]

Tans, P. P.

B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol.24(1), 82–94 (2007).
[CrossRef]

M. L. Bender, P. P. Tans, J. T. Ellis, J. Orchardo, and K. Habfast, “A high precision isotope ratio mass spectrometry method for measuring the O2/N2 ratio of air,” Geochim. Cosmochim. Acta58(21), 4751–4758 (1994).
[CrossRef]

R. F. Keeling, R. P. Najjar, M. L. Bender, and P. P. Tans, “What atmospheric oxygen measurements can tell us about the global carbon cycle,” Global Biogeochem. Cycles7(1), 37–67 (1993).
[CrossRef]

Teclaw, R. M.

B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol.24(1), 82–94 (2007).
[CrossRef]

Teichert, H.

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers,” Proc. Combust. Inst.30(1), 1611–1618 (2005).
[CrossRef]

Tittel, F. K.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 m by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

H. Adams, J. L. Hall, L. A. Russell, J. V. V. Kasper, F. K. Tittel, and R. F. Curl, “Color-center laser spectroscopy of transient species produced by excimer-laser flash photolysis,” J. Opt. Soc. Am. B2(5), 776–780 (1985).
[CrossRef]

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

Urban, W.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

Vogel, P.

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001).
[CrossRef]

Voitovich, A. V.

E. A. Mironov, A. V. Voitovich, and O. V. Palashov, “Nonorthogonally magnetised permanent-magnet Faraday isolators,” Quantum Electron.41(1), 71–74 (2011).
[CrossRef]

Wehr, R.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).
[CrossRef]

Weibring, P.

D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser Photonics Rev.3(4), 343–354 (2009).
[CrossRef]

Westberg, J.

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transf.111(16), 2415–2433 (2010).
[CrossRef]

Willer, U.

A. Pohlkötter, M. Köhring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors (Basel)10(9), 8466–8477 (2010).
[CrossRef] [PubMed]

Wolfrum, J.

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers,” Proc. Combust. Inst.30(1), 1611–1618 (2005).
[CrossRef]

Wood, E.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).
[CrossRef]

Wysocki, G.

S. G. So, E. Jeng, and G. Wysocki, “VCSEL-based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 m by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Xie, X.

Zahniser, M. S.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (5)

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B78(3-4), 503–511 (2004).
[CrossRef]

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001).
[CrossRef]

H. Cattaneo, T. Laurila, and R. Hernberg, “Photoacoustic detection of oxygen using cantilever enhanced technique,” Appl. Phys. B85(2-3), 337–341 (2006).
[CrossRef]

S. G. So, E. Jeng, and G. Wysocki, “VCSEL-based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011).
[CrossRef]

Geochim. Cosmochim. Acta (1)

M. L. Bender, P. P. Tans, J. T. Ellis, J. Orchardo, and K. Habfast, “A high precision isotope ratio mass spectrometry method for measuring the O2/N2 ratio of air,” Geochim. Cosmochim. Acta58(21), 4751–4758 (1994).
[CrossRef]

Global Biogeochem. Cycles (2)

A. C. Manning, R. F. Keeling, and J. P. Severinghaus, “Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer,” Global Biogeochem. Cycles13(4), 1107–1115 (1999).
[CrossRef]

R. F. Keeling, R. P. Najjar, M. L. Bender, and P. P. Tans, “What atmospheric oxygen measurements can tell us about the global carbon cycle,” Global Biogeochem. Cycles7(1), 37–67 (1993).
[CrossRef]

J. Atmos. Chem. (1)

R. F. Keeling, “Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air,” J. Atmos. Chem.7(2), 153–176 (1988).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol.24(1), 82–94 (2007).
[CrossRef]

J. Chem. Phys. (3)

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980).
[CrossRef]

M. C. McCarthy, J. C. Bloch, and R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy: A sensitive and selective absorption scheme for paramagnetic molecules,” J. Chem. Phys.100(9), 6331–6346 (1994).
[CrossRef]

M. C. McCarthy and R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy of PdH, PdD, NiH, and CuH,” J. Chem. Phys.100(9), 6347–6358 (1994).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (4)

J. Phys. E Sci. Instrum. (1)

R. Kocache, “The measurement of oxygen on gas mixtures,” J. Phys. E Sci. Instrum.19(6), 401–412 (1986).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transf.111(16), 2415–2433 (2010).
[CrossRef]

Laser Photonics Rev. (1)

D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser Photonics Rev.3(4), 343–354 (2009).
[CrossRef]

Opt. Eng. (1)

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Plant Physiol. (1)

R. D. Guy, M. L. Fogel, and J. A. Berry, “Photosynthetic fractionation of the stable isotopes of oxygen and carbon,” Plant Physiol.101(1), 37–47 (1993).
[PubMed]

Proc. Combust. Inst. (1)

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers,” Proc. Combust. Inst.30(1), 1611–1618 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 m by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009).
[CrossRef] [PubMed]

Quantum Electron. (1)

E. A. Mironov, A. V. Voitovich, and O. V. Palashov, “Nonorthogonally magnetised permanent-magnet Faraday isolators,” Quantum Electron.41(1), 71–74 (2011).
[CrossRef]

Sensors (Basel) (1)

A. Pohlkötter, M. Köhring, U. Willer, and W. Schade, “Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy,” Sensors (Basel)10(9), 8466–8477 (2010).
[CrossRef] [PubMed]

Tellus B Chem. Phys. Meterol. (1)

B. B. Stephens, R. F. Keeling, and W. J. Paplawsky, “Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique,” Tellus B Chem. Phys. Meterol.55(4), 857–878 (2003).
[CrossRef]

Other (2)

Y. Wang, M. Nikodem, J. Hoyne, and G. Wysocki, “Heterodyne-enhanced Faraday rotation spectrometer,” M. Razeghi, E. Tournie, and G. J. Brown, eds. (SPIE, San Francisco, California, USA, 2012), pp. 82682F–82688.

S. So, O. Marchat, E. Jeng, and G. Wysocki, “Ultra-sensitive faraday rotation spectroscopy of O2: model vs. experiment,” in CLEO(Optical Society of America, San Jose, 2011), p. CThT2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Experimental layout of a DC-FRS instrument. The components and connections that are displayed with dotted lines are only used when acquiring the O2 FRS signal using the line-locked mode of operation. The experimental components in the diagram are labeled as followed: (PC) computer running LabView code for laser control and data acquisition, (LD) laser current driver, (TC) laser temperature controller, (VCSEL) vertical cavity surface emitting laser, (GT) Glan-Thompson polarizer, (MPC) cylindrical mirror MPC enclosed by octupole magnet arrangement, (WS) Wollaston polarizer, (ABD) auto-balancing photodetector with photodiodes 1 and 2 labeled (PD1) and (PD2) respectively, (LIA 1,2) lock-in amplifier 1, and 2, (PID) electronic proportional-integral-derivative controller, (FXG) function generator providing the sine wave for laser wavelength modulation and the reference frequency for phase sensitive detection. (b) The concept of polarization angle modulation (PAM) created through wavelength modulation (WM) over a spectrum of the static difference in indices of refraction for circularly polarized light components induced by the DC-magnetic field. The input laser light polarization before the MPC is shown with a plane of polarization at an arbitrary angle θ. The xy axes have been selected to coincide with the two orthogonal polarization components emerging from the Wollaston polarizer that are incident on PD1 and PD2.

Fig. 2
Fig. 2

The axial magnetic field profile measured along the center of the octupole magnet arrangement. The area highlighted under the axial magnetic field profile emphasizes the 110 mm region enclosed by the MPC.

Fig. 3
Fig. 3

(a) Example 1f DC-FRS spectrum containing three lines of O2 in the A electronic band acquired at atmospheric pressure (detection bandwidth 0.5 Hz, active optical path 6.8 m). (b) Trace A shows an expanded view of the spectrum shown in Fig. 3(a) plotted together with another spectrum recorded 75 minutes later under identical conditions (Trace B). The subtraction of the two spectra is shown in Trace C. DC-FRS signals from the minor 16O18O isotopologue are clearly visible and can be used for isotopic content quantification.

Fig. 4
Fig. 4

Example of 2f (Trace B) and 3f (Trace A) DC-FRS spectra of the pP1(1) transition of 16O2 acquired simultaneously as the VCSEL temperature is gradually tuned over the oxygen transition. The analog voltage outputs from the lock-in amplifiers (detection bandwidths of 2.5 Hz) are plotted as a function of the laser temperature acquired at the temperature controller output. The data was acquired using the Nirvana photodetector in auto-balance mode.

Fig. 5
Fig. 5

Time series of the 2f signal peak for the pP1(1) transition of 16O2 (Trace A) while actively line-locking to the zero-crossing voltage of the 3f DC-FRS signal. Trace B shows optical power measured at the signal photodiode output in the Nirvana balanced photodetection unit. Trace C is the peak 2f signal from Trace A normalized to the optical power in Trace B.

Fig. 6
Fig. 6

Comparison of the Allan deviation obtained by monitoring the 2f signal at the center of the pP1(1) transition of oxygen with active line-locking engaged (Trace A) and by measuring the value of the 2f signal in the baseline away from the target transition without active wavelength locking (Trace B). The right y-axis provides the voltage noise measured with the lock-in amplifier. The 2f DC-FRS signal was converted into the concentration units (ppmv) shown on the left y-axis. The initial detection limits at 0.28 s integration time are provided for both traces in the labels on the left, and the ultimate minimum detection limit values are provided in the labels above the minima observed in the Allan plots.

Fig. 7
Fig. 7

Output noise (1σ) as a function of optical power on the signal detector modeled for DC-FRS system with a measurement bandwidth of 1.25 Hz and a �� = 52.52°, and compared to experimentally measured noise for the same conditions. A vertical line indicates the optical power on the signal detector observed for the measurement of the pP1(1) transition.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

J 0 =[ E x,0 E y,0 ]= E 0 [ cosθ sinθ ]
J sample =exp( 1 4 ( α L + α R )L )×[ cosh( κ+iΘ ) isinh( κ+iΘ ) isinh( κ+iΘ ) cosh( κ+iΘ ) ]
J PD =[ E x E y ]= J Wollaston × J Sample × J 0
J PD1 =[ E x 0 ]= E 0 β×[ 1 0 0 0 ]×[ cosh( κ+iΘ ) isinh( κ+iΘ ) isinh( κ+iΘ ) cosh( κ+iΘ ) ]×[ cosθ sinθ ]
J PD1 =[ 0 E y ]= E 0 β×[ 0 0 0 1 ]×[ cosh( κ+iΘ ) isinh( κ+iΘ ) isinh( κ+iΘ ) cosh( κ+iΘ ) ]×[ cosθ sinθ ]
E x,PD1 = E 0 β[ cosθcosh( κ+iΘ )isinθsinh( κ+iΘ ) ]
E y,PD2 = E 0 β[ sinθcosh( κ+iΘ )icosθsinh( κ+iΘ ) ]
P PD1 = P 0 β 2 ×( cosh2κ 2 + cos2Θcos2θ 2 + sin2Θsin2θ 2 )
P PD2 = P 0 β 2 ×( cosh2κ 2 cos2Θcos2θ 2 sin2Θsin2θ 2 )
A PD = ηe hν P PD
V signal 45 = R V ( A PD1 A PD2 )= R v ηe hν P 0 β 2 ×sin2Θ
V signal 45 = R v ηe hν P 0 exp( 1 2 ( α L + α R )L )×2Θ
r= A PD1DC A PD2DC = cos 2 θ sin 2 θ
A sig = A PD1 = ηe hν P 0 β 2 ×( cos 2 θ+Θsin2θ )
A ref =r× A PD2 =r× ηe hν P 0 β 2 ×( sin 2 θΘsin2θ )
V signal = R v ( A sig A ref )= R v ηe hν P 0 exp( 1 2 ( α L + α R )L )( 1+r )×Θsin2θ
Θ NEA = σ v ( 1+r )sin2θ P 0 R v ηe hν G LIA
σ total = [ σ det 2 + σ laser 2 + σ shot 2 ] 1/2
σ det =NEP× R v ηe hv G LIA Δf
σ laser = cos 2 θ P 0 R v ηe hν G LIA σ RIN Δf 10 CMRR/10
σ shot = G LIA R v ( 4e ηe hν cos 2 θ P 0 Δf ) 1/2

Metrics