Abstract

We propose a modified localized carrier distribution scheme based on multi-tone generation to generate 60 GHz mm-wave for different wireless users and it improves the carrier utilization efficiency by 33.3%. The principle of multiple-user discrete Fourier transform spread optical orthogonal frequency-division multiplexing (DFT-S OFDM) Radio-over-fiber (RoF) system is presented. This multiple-user system is applicable to passive optical network (PON). Then we demonstrate a 8x4.65 Gb/s multiple-user DFT-S OFDM RoF-PON wireless access system over 40 km fiber link and 60 GHz wireless link using two localized carrier distribution scheme with different spectral efficiency. Compared to conventional OFDM, 2.3 dB reduction of receiver power using DFT-S OFDM modulation scheme and the calculated BER performance for 8 wireless users clearly demonstrates the feasibility of this spectrally efficient multiple-user RoF-PON scheme.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett.18(16), 1726–1728 (2006).
    [CrossRef]
  2. J. Yu, G. K. Chang, Z. Jia, A. Chowdhury, M. F. Huang, H. C. Chien, Y. T. Hsueh, W. Jian, C. Liu, and Z. Dong, “Cost-effective optical millimeter technologies and field demonstrations for very high throughput wireless-over-fiber access systems,” J. Lightwave Technol.28(16), 2376–2397 (2010).
    [CrossRef]
  3. L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A novel scheme for seamless integration of RoF with centralized lightwave OFDM-WDM-PON system,” J. Lightwave Technol.27(14), 2786–2791 (2009).
    [CrossRef]
  4. Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, “WDM-RoF-PON architecture for flexible wireless and wire-Line layout,” J. Opt. Commun. Netw.2(2), 117–121 (2010).
    [CrossRef]
  5. T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, “Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source,” J. Lightwave Technol.24(1), 404–410 (2006).
    [CrossRef]
  6. H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems,” J. Lightwave Technol.21(8), 1735–1741 (2003).
    [CrossRef]
  7. J. Yu, Z. Jia, T. Wang, and G. K. Chang, “A novel radio-over-fiber vonfiguration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett.19(3), 140–142 (2007).
    [CrossRef]
  8. J. Yu, G. K. Chang, A. M. J. Koonen, and G. Ellinas, “Radio-overoptical fiber networks: introduction to the feature issue,” J. Opt. Netw.8(5), 488–490 (2009).
    [CrossRef]
  9. L. Tao, J. Yu, Y. Fang, J. Zhang, Y. Shao, and N. Chi, “Analysis of noise spread in optical DFT-S OFDM systems,” J. Lightwave Technol.30(20), 3219–3225 (2012).
    [CrossRef]
  10. Q. Yang, Z. He, Z. Yang, S. Yu, X. Yi, and W. Shieh, “Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing,” Opt. Express20(3), 2379–2385 (2012).
    [CrossRef] [PubMed]
  11. Y. Tang, W. Shieh, and B. S. Krongold, “DFT-Spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett.22(16), 1250–1252 (2010).
    [CrossRef]
  12. J. Lee, F. Breyer, S. Randel, J. Zeng, F. Huijskens, H. P. van den Boom, A. M. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” Opt. Fiber Conf. (OFC 2007), Anaheim, USA, PDP 6, Mar. 2011.

2012 (2)

2010 (3)

2009 (2)

2007 (1)

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “A novel radio-over-fiber vonfiguration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett.19(3), 140–142 (2007).
[CrossRef]

2006 (2)

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett.18(16), 1726–1728 (2006).
[CrossRef]

T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, “Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source,” J. Lightwave Technol.24(1), 404–410 (2006).
[CrossRef]

2003 (1)

Cao, Z.

Chang, G. K.

Chen, L.

Chi, N.

Chien, H. C.

Chowdhury, A.

Dong, Z.

Ellinas, G.

Fang, Y.

He, Z.

Hsueh, Y. T.

Huang, M.

Huang, M. F.

Jia, Z.

J. Yu, G. K. Chang, Z. Jia, A. Chowdhury, M. F. Huang, H. C. Chien, Y. T. Hsueh, W. Jian, C. Liu, and Z. Dong, “Cost-effective optical millimeter technologies and field demonstrations for very high throughput wireless-over-fiber access systems,” J. Lightwave Technol.28(16), 2376–2397 (2010).
[CrossRef]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “A novel radio-over-fiber vonfiguration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett.19(3), 140–142 (2007).
[CrossRef]

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett.18(16), 1726–1728 (2006).
[CrossRef]

Jian, W.

Kitayama, K.

Koonen, A. M. J.

Krongold, B. S.

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-Spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett.22(16), 1250–1252 (2010).
[CrossRef]

Kuri, T.

Liu, C.

Lu, J.

Nakasyotani, T.

Shao, Y.

Shieh, W.

Q. Yang, Z. He, Z. Yang, S. Yu, X. Yi, and W. Shieh, “Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing,” Opt. Express20(3), 2379–2385 (2012).
[CrossRef] [PubMed]

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-Spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett.22(16), 1250–1252 (2010).
[CrossRef]

Tang, Q.

Tang, Y.

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-Spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett.22(16), 1250–1252 (2010).
[CrossRef]

Tao, L.

Toda, H.

Wang, J.

Wang, T.

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “A novel radio-over-fiber vonfiguration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett.19(3), 140–142 (2007).
[CrossRef]

Wang, W.

Wen, S.

Xia, M.

Yamashita, T.

Yang, Q.

Yang, Z.

Yi, X.

Yu, J.

L. Tao, J. Yu, Y. Fang, J. Zhang, Y. Shao, and N. Chi, “Analysis of noise spread in optical DFT-S OFDM systems,” J. Lightwave Technol.30(20), 3219–3225 (2012).
[CrossRef]

J. Yu, G. K. Chang, Z. Jia, A. Chowdhury, M. F. Huang, H. C. Chien, Y. T. Hsueh, W. Jian, C. Liu, and Z. Dong, “Cost-effective optical millimeter technologies and field demonstrations for very high throughput wireless-over-fiber access systems,” J. Lightwave Technol.28(16), 2376–2397 (2010).
[CrossRef]

Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, “WDM-RoF-PON architecture for flexible wireless and wire-Line layout,” J. Opt. Commun. Netw.2(2), 117–121 (2010).
[CrossRef]

L. Chen, J. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A novel scheme for seamless integration of RoF with centralized lightwave OFDM-WDM-PON system,” J. Lightwave Technol.27(14), 2786–2791 (2009).
[CrossRef]

J. Yu, G. K. Chang, A. M. J. Koonen, and G. Ellinas, “Radio-overoptical fiber networks: introduction to the feature issue,” J. Opt. Netw.8(5), 488–490 (2009).
[CrossRef]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “A novel radio-over-fiber vonfiguration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett.19(3), 140–142 (2007).
[CrossRef]

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett.18(16), 1726–1728 (2006).
[CrossRef]

Yu, S.

Zhang, J.

Zhou, H.

IEEE Photon. Technol. Lett. (3)

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett.18(16), 1726–1728 (2006).
[CrossRef]

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “A novel radio-over-fiber vonfiguration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett.19(3), 140–142 (2007).
[CrossRef]

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-Spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett.22(16), 1250–1252 (2010).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Opt. Express (1)

Other (1)

J. Lee, F. Breyer, S. Randel, J. Zeng, F. Huijskens, H. P. van den Boom, A. M. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” Opt. Fiber Conf. (OFC 2007), Anaheim, USA, PDP 6, Mar. 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Interleaved carrier distribution scheme [5], (b) localized carrier distribution scheme with 20 GHz carrier frequency spacing, (c) localized carrier distribution scheme with 15 GHz carrier frequency spacing.

Fig. 2
Fig. 2

Schematic diagram of the multiple-user DFT-S OFDM RoF-PON wireless access system, ECL: external cavity laser, PM: phase modulator, EA: electronic amplifier, TOF: tunable optical filter.

Fig. 3
Fig. 3

Experimental setup of the DFT-S OFDM multiple-user RoF-PON system, ECL: external cavity laser, PM: phase modulator, EA: electronic amplifier, IM: intensity modulator, AWG: arbitrary waveform generator, WSS: waveshaper.

Fig. 4
Fig. 4

The localized carrier distribution scheme with 20 GHz carrier frequency spacing, the spectrum (a) after phase modulator, (b) after wss1, (c) after 2:1 coupler, (d) after wss2, (e) calculated BER of DFT-S OFDM signal for all 6 wireless users after 40 km fiber link and 60 GHz wireless link.

Fig. 5
Fig. 5

The localized carrier distribution scheme with 15 GHz carrier frequency spacing, the spectrum (a) after phase modulator, (b) after wss1, (c) after 2:1 coupler, (d) after wss2, (e) calculated BER of DFT-S OFDM signal for all 8 wireless users after 40 km fiber link and 60 GHz wireless link.

Fig. 6
Fig. 6

BER performance versus received optical power of the RoF-PON system with different modulation formats and carrier distribution schemes.

Metrics