Abstract

A single groove in a parallel-plate waveguide (PPWG) has been applied to a tunable terahertz (THz) notch filter with a transverse-electromagnetic (TEM) mode. When the air gap between the metal plates of the PPWG is controlled from 60 to 240 μm using a motor controlled translation stage or a piezo-actuator, the resonant frequency of the notch filter is changed from 1.75 up to 0.62 THz, respectively. Therefore, the measured tunable sensitivity of the notch filter increases to 6.28 GHz/μm. The measured resonant frequencies were found to be in good agreement with the calculation using an effective groove depth. Using a finite-difference time-domain (FDTD) simulation, we also demonstrate that the sensitivity of a THz microfluidic sensor can be increased via a small air gap, a narrow groove width, and a deep groove depth.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
    [CrossRef]
  2. A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87(5), 051101 (2005).
    [CrossRef]
  3. J. Kitagawa, M. Kodama, S. Koya, Y. Nishifuji, D. Armand, and Y. Kadoya, “THz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands,” Opt. Express20(16), 17271–17280 (2012).
    [CrossRef] [PubMed]
  4. E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T.-I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express17(11), 9212–9218 (2009).
    [CrossRef] [PubMed]
  5. N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves33(3), 327–332 (2012).
    [CrossRef]
  6. J.-Y. Lu, H.-Z. Chen, C.-H. Lai, H.-C. Chang, B. You, T.-A. Liu, and J.-L. Peng, “Application of metal-clad antiresonant reflecting hollow waveguides to tunable terahertz notch filter,” Opt. Express19(1), 162–167 (2011).
    [CrossRef] [PubMed]
  7. E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express19(16), 14852–14859 (2011).
    [CrossRef] [PubMed]
  8. R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett.97(13), 131106 (2010).
    [CrossRef]
  9. V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett.36(8), 1452–1454 (2011).
    [CrossRef] [PubMed]
  10. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001).
    [CrossRef] [PubMed]
  11. S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18(2), 1289–1295 (2010).
    [CrossRef] [PubMed]
  12. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009).
    [CrossRef] [PubMed]
  13. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
    [CrossRef]
  14. E. S. Lee, J.-K. So, G.-S. Park, D. Kim, C.-S. Kee, and T.-I. Jeon, “Terahertz band gaps induced by metal grooves inside parallel-plate waveguides,” Opt. Express20(6), 6116–6123 (2012).
    [CrossRef] [PubMed]
  15. E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett.97(18), 181112 (2010).
    [CrossRef]
  16. J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Milli. Terahz. Waves31(9), 1015–1021 (2010).
    [CrossRef]

2012

2011

2010

S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18(2), 1289–1295 (2010).
[CrossRef] [PubMed]

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett.97(13), 131106 (2010).
[CrossRef]

E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett.97(18), 181112 (2010).
[CrossRef]

J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Milli. Terahz. Waves31(9), 1015–1021 (2010).
[CrossRef]

2009

2005

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87(5), 051101 (2005).
[CrossRef]

2004

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

2001

Al-Naib, I.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves33(3), 327–332 (2012).
[CrossRef]

Armand, D.

Astley, V.

V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett.36(8), 1452–1454 (2011).
[CrossRef] [PubMed]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

Baker, C.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

Bingham, A. L.

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87(5), 051101 (2005).
[CrossRef]

Born, N.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves33(3), 327–332 (2012).
[CrossRef]

Chang, H.-C.

Chen, F.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett.97(13), 131106 (2010).
[CrossRef]

Chen, H.-Z.

Cumming, D. R. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

Drysdale, T. D.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

Fernandez-Dominguez, A. I.

Garcia-Vidal, F. J.

Gregory, I. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

Grischkowsky, D.

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87(5), 051101 (2005).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001).
[CrossRef] [PubMed]

Jeon, T.-I.

Ji, Y. B.

E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett.97(18), 181112 (2010).
[CrossRef]

S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18(2), 1289–1295 (2010).
[CrossRef] [PubMed]

Kadoya, Y.

Kang, D. H.

Kee, C.-S.

Kim, D.

Kim, D. S.

Kim, S.-H.

Kitagawa, J.

Koch, M.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves33(3), 327–332 (2012).
[CrossRef]

Kodama, M.

Koya, S.

Lai, C.-H.

Laib, J. P.

J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Milli. Terahz. Waves31(9), 1015–1021 (2010).
[CrossRef]

Lee, E. S.

Lee, S.-G.

Linfield, E. H.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

Liu, J.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

Liu, T.-A.

Lu, J.-Y.

Martin-Moreno, L.

McCracken, B.

Mendis, R.

Mittleman, D. M.

V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett.36(8), 1452–1454 (2011).
[CrossRef] [PubMed]

J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Milli. Terahz. Waves31(9), 1015–1021 (2010).
[CrossRef]

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett.97(13), 131106 (2010).
[CrossRef]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009).
[CrossRef] [PubMed]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

Nag, A.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett.97(13), 131106 (2010).
[CrossRef]

Nishifuji, Y.

Park, G.-S.

Peng, J.-L.

So, J.-K.

Tribe, W. R.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

Vieweg, N.

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves33(3), 327–332 (2012).
[CrossRef]

You, B.

Zhao, Y.

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87(5), 051101 (2005).
[CrossRef]

Appl. Phys. Lett.

R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett.97(13), 131106 (2010).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009).
[CrossRef]

E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett.97(18), 181112 (2010).
[CrossRef]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004).
[CrossRef]

A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87(5), 051101 (2005).
[CrossRef]

J. Infrared Milli. Terahz. Waves

N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves33(3), 327–332 (2012).
[CrossRef]

J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Milli. Terahz. Waves31(9), 1015–1021 (2010).
[CrossRef]

Opt. Express

E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T.-I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express17(11), 9212–9218 (2009).
[CrossRef] [PubMed]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009).
[CrossRef] [PubMed]

S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18(2), 1289–1295 (2010).
[CrossRef] [PubMed]

J.-Y. Lu, H.-Z. Chen, C.-H. Lai, H.-C. Chang, B. You, T.-A. Liu, and J.-L. Peng, “Application of metal-clad antiresonant reflecting hollow waveguides to tunable terahertz notch filter,” Opt. Express19(1), 162–167 (2011).
[CrossRef] [PubMed]

E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express19(16), 14852–14859 (2011).
[CrossRef] [PubMed]

E. S. Lee, J.-K. So, G.-S. Park, D. Kim, C.-S. Kee, and T.-I. Jeon, “Terahertz band gaps induced by metal grooves inside parallel-plate waveguides,” Opt. Express20(6), 6116–6123 (2012).
[CrossRef] [PubMed]

J. Kitagawa, M. Kodama, S. Koya, Y. Nishifuji, D. Armand, and Y. Kadoya, “THz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands,” Opt. Express20(16), 17271–17280 (2012).
[CrossRef] [PubMed]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the PPWG. A single groove is embedded into the lower flat plate, which is attached to a piezo-actuator (or a motor-controlled translation stage). (a, b) Optical micrograph of the single groove. Samples A and B show 70 and 105-μm groove widths and 28 and 40-μm groove depths, respectively. (c) Expanded view of the groove.

Fig. 2
Fig. 2

(a) Measured THz pulses (sample A: upper red, sample B: lower black) for 100-μm air gap. The inserted figures show the expanded THz ringing from 10 to 25 ps. (b)-(e) Spectra of the measured THz pulses for 100-, 120-, 140, and 160-μm air gaps, respectively for samples A (red) and B (black). The inserted figures show expanded images of the resonances.

Fig. 3
Fig. 3

(a) Absorbance spectra in samples A and B when varying the air gaps from 60 to 240-μm. (b) The resonant frequency shift of the notch filters according to the air gaps. The solid lines are numerical fitting lines. Red circles and black squares indicate sample A and B, respectively. (c) Q-factors of the notch filter resonances according to the air gaps.

Fig. 4
Fig. 4

Measured voltage-dependent resonant frequencies of the notch filter (red squares) and the air gaps of the PPWG (black circles) when one end of the piezo-actuator is attached to the flat plate.

Fig. 5
Fig. 5

Poynting vectors around the groove (sample A) for an air gap of 100 μm and a resonant frequency of 1.29 THz. (a)-(f) Each frame shows a 1/12 time period. (g) An enlarged graph of (d) in which Δd is 12.5 μm for an air gap of 100 μm.

Fig. 6
Fig. 6

(a) The resonant frequencies of the notch filter for four different fluid levels with different reflective indexes. (b) The resonant frequency shift for different sample conditions when the groove is fully filled with liquid.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f r (g)= c 2×[ d eff (g)+g ] ,

Metrics