Abstract

We propose and experimentally demonstrate an improved scheme to generate optical frequency-locked multi-channel multi-carriers (MCMC), using a gain-independent multi-channel recirculating frequency shifter (MC-RFS) loop based on single sideband (SSB) modulation. We re-build the RFS structure with better performance. By using MC-RFS loop, we can generate N-channel subcarriers each round trip without interference. These subcarriers of each channel are stable and frequency-locked, which can be used for multi-channel WDM source. The dual-channel RFS loop is carried out for demonstration in our experiment with dual-carrier source. Using this scheme, we successfully generate 62 frequency-locked subcarriers with 25-GHz frequency spacing in 2 channels and each channel has 31 tones.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol.21(11), 2705–2714 (2003).
    [CrossRef]
  2. J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21x100 Gb/s) OFDM optical signal generation and transmission over 3200-km fiber,” IEEE Photon. Technol. Lett.23(15), 1061–1063 (2011).
    [CrossRef]
  3. N. Takachio, H. Suzuki, M. Fujiwara, J. Kani, K. Iwatsuki, H. Yamada, T. Shibata, and T. Kitoh, “Wide area gigabit access network based on 12.5 GHz spaced 256 channel super-dense WDM technologies,” Electron. Lett.37(5), 309–311 (2001).
    [CrossRef]
  4. N. Takachio, H. Suzuki, M. Fujiwara, J. Kani, T. Kitoh, M. Teshima, and K. Iwatsuki, “12.5 GHz-spaced super-dense WDM ring network handling 256 wavelengths with tapped-type OADM’s,” in Proc. OFC’2002, ww2, 2002.
  5. X. Liu, S. Chandrasekhar, B. Zhu, and D. Peckham, “Efficient Digital Coherent Detection of A 1.2-Tb/s 24carrier no-guard-interval CO-OFDM signal by simultaneously detecting multiple carriers per sampling,” OFC. OWO2, (2010).
  6. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  7. K. Shimano, Y. Takigawa, M. Koga, and K. Sato, “Development of photonic MPLS router,” in Proc. ECOC’01, Tu.F.22, 2001.
  8. A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a Fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett.28, 97–103 (2010).
  9. P. J. Delfyett, S. Gee, H. Myoung-Taek Choi, Izadpanah, S. Wangkuen Lee, F. Ozharar, Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Technol.24(7), 2701–2719 (2006).
    [CrossRef]
  10. K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” J. Lightwave Technol.36, 773–779 (2000).
  11. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express14(17), 7617–7622 (2006).
    [CrossRef] [PubMed]
  12. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett.35(19), 3234–3236 (2010).
    [CrossRef] [PubMed]
  13. T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multicarrier light source with flattened spectrum using phase modulators and dispersion medium,” J. Lightwave Technol.27(19), 4297–4305 (2009).
    [CrossRef]
  14. T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using an optical single-side-band modulator,” IEE Photon. Technol. Lett.14(10), 1454–1456 (2002).
    [CrossRef]
  15. J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on re-circulating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express18(17), 17597–17609 (2010).
    [CrossRef] [PubMed]
  16. F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Lightwave Technol.29(8), 1085–1091 (2011).
    [CrossRef]
  17. X. Li, J. Yu, Z. Dong, J. Zhang, Y. Shao, and N. Chi, “Multi-channel multi-carrier generation using multi-wavelength frequency shifting recirculating loop,” Opt. Express20(20), 21833–21839 (2012).
    [CrossRef] [PubMed]
  18. J. Zhang, J. Yu, N. Chi, Z. Dong, X. Li, Y. Shao, and L. Tao, “Multichannel optical frequency-locked multicarrier source generation based on multichannel recirculation frequency shifter loop,” Opt. Lett.37(22), 4714–4716 (2012).
    [PubMed]

2012

2011

F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Lightwave Technol.29(8), 1085–1091 (2011).
[CrossRef]

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21x100 Gb/s) OFDM optical signal generation and transmission over 3200-km fiber,” IEEE Photon. Technol. Lett.23(15), 1061–1063 (2011).
[CrossRef]

2010

2009

2006

2003

2002

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using an optical single-side-band modulator,” IEE Photon. Technol. Lett.14(10), 1454–1456 (2002).
[CrossRef]

2001

N. Takachio, H. Suzuki, M. Fujiwara, J. Kani, K. Iwatsuki, H. Yamada, T. Shibata, and T. Kitoh, “Wide area gigabit access network based on 12.5 GHz spaced 256 channel super-dense WDM technologies,” Electron. Lett.37(5), 309–311 (2001).
[CrossRef]

2000

K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” J. Lightwave Technol.36, 773–779 (2000).

Chen, S.

Chi, N.

Clarke, A.

A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a Fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett.28, 97–103 (2010).

Delfyett, P. J.

Dong, Z.

Eggleton, B.

A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a Fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett.28, 97–103 (2010).

Finot, C.

Fujiwara, M.

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol.21(11), 2705–2714 (2003).
[CrossRef]

N. Takachio, H. Suzuki, M. Fujiwara, J. Kani, K. Iwatsuki, H. Yamada, T. Shibata, and T. Kitoh, “Wide area gigabit access network based on 12.5 GHz spaced 256 channel super-dense WDM technologies,” Electron. Lett.37(5), 309–311 (2001).
[CrossRef]

Gee, S.

Higuma, K.

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using an optical single-side-band modulator,” IEE Photon. Technol. Lett.14(10), 1454–1456 (2002).
[CrossRef]

Ibsen, M.

Iwatsuki, K.

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol.21(11), 2705–2714 (2003).
[CrossRef]

N. Takachio, H. Suzuki, M. Fujiwara, J. Kani, K. Iwatsuki, H. Yamada, T. Shibata, and T. Kitoh, “Wide area gigabit access network based on 12.5 GHz spaced 256 channel super-dense WDM technologies,” Electron. Lett.37(5), 309–311 (2001).
[CrossRef]

Izadpanah,

Izutsu, M.

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using an optical single-side-band modulator,” IEE Photon. Technol. Lett.14(10), 1454–1456 (2002).
[CrossRef]

Kani, J.

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol.21(11), 2705–2714 (2003).
[CrossRef]

N. Takachio, H. Suzuki, M. Fujiwara, J. Kani, K. Iwatsuki, H. Yamada, T. Shibata, and T. Kitoh, “Wide area gigabit access network based on 12.5 GHz spaced 256 channel super-dense WDM technologies,” Electron. Lett.37(5), 309–311 (2001).
[CrossRef]

Kawanishi, T.

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using an optical single-side-band modulator,” IEE Photon. Technol. Lett.14(10), 1454–1456 (2002).
[CrossRef]

Kitoh, T.

N. Takachio, H. Suzuki, M. Fujiwara, J. Kani, K. Iwatsuki, H. Yamada, T. Shibata, and T. Kitoh, “Wide area gigabit access network based on 12.5 GHz spaced 256 channel super-dense WDM technologies,” Electron. Lett.37(5), 309–311 (2001).
[CrossRef]

Komukai, T.

Kubota, H.

K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” J. Lightwave Technol.36, 773–779 (2000).

Leaird, D. E.

Li, J.

Li, X.

Long, C. M.

Ma, Y.

Mukasa, K.

Myoung-Taek Choi, H.

Nakazawa, M.

K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” J. Lightwave Technol.36, 773–779 (2000).

Oikawa, S.

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using an optical single-side-band modulator,” IEE Photon. Technol. Lett.14(10), 1454–1456 (2002).
[CrossRef]

Ozharar, F.

Parmigiani, F.

Petropoulos, P.

Quinlan,

Richardson, D. J.

Roelens, M.

A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a Fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett.28, 97–103 (2010).

Roelens, M. A.

Shao, Y.

Shibata, T.

N. Takachio, H. Suzuki, M. Fujiwara, J. Kani, K. Iwatsuki, H. Yamada, T. Shibata, and T. Kitoh, “Wide area gigabit access network based on 12.5 GHz spaced 256 channel super-dense WDM technologies,” Electron. Lett.37(5), 309–311 (2001).
[CrossRef]

Shieh, W.

Supradeepa, V. R.

Suzuki, H.

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol.21(11), 2705–2714 (2003).
[CrossRef]

N. Takachio, H. Suzuki, M. Fujiwara, J. Kani, K. Iwatsuki, H. Yamada, T. Shibata, and T. Kitoh, “Wide area gigabit access network based on 12.5 GHz spaced 256 channel super-dense WDM technologies,” Electron. Lett.37(5), 309–311 (2001).
[CrossRef]

Suzuki, K.

Takachio, N.

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol.21(11), 2705–2714 (2003).
[CrossRef]

N. Takachio, H. Suzuki, M. Fujiwara, J. Kani, K. Iwatsuki, H. Yamada, T. Shibata, and T. Kitoh, “Wide area gigabit access network based on 12.5 GHz spaced 256 channel super-dense WDM technologies,” Electron. Lett.37(5), 309–311 (2001).
[CrossRef]

Takada, A.

Tamura, K.

K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” J. Lightwave Technol.36, 773–779 (2000).

Tang, Y.

Tao, L.

Teshima, M.

Tian, F.

Wangkuen Lee, S.

Weiner, A. M.

Williams, D.

A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a Fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett.28, 97–103 (2010).

Wu, R.

Xi, L.

Yamada, H.

N. Takachio, H. Suzuki, M. Fujiwara, J. Kani, K. Iwatsuki, H. Yamada, T. Shibata, and T. Kitoh, “Wide area gigabit access network based on 12.5 GHz spaced 256 channel super-dense WDM technologies,” Electron. Lett.37(5), 309–311 (2001).
[CrossRef]

Yamamoto, T.

Yang, Q.

Yilmaz, T.

Yu, J.

Zhang, J.

Zhang, X.

Electron. Lett.

N. Takachio, H. Suzuki, M. Fujiwara, J. Kani, K. Iwatsuki, H. Yamada, T. Shibata, and T. Kitoh, “Wide area gigabit access network based on 12.5 GHz spaced 256 channel super-dense WDM technologies,” Electron. Lett.37(5), 309–311 (2001).
[CrossRef]

IEE Photon. Technol. Lett.

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using an optical single-side-band modulator,” IEE Photon. Technol. Lett.14(10), 1454–1456 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a Fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett.28, 97–103 (2010).

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21x100 Gb/s) OFDM optical signal generation and transmission over 3200-km fiber,” IEEE Photon. Technol. Lett.23(15), 1061–1063 (2011).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

N. Takachio, H. Suzuki, M. Fujiwara, J. Kani, T. Kitoh, M. Teshima, and K. Iwatsuki, “12.5 GHz-spaced super-dense WDM ring network handling 256 wavelengths with tapped-type OADM’s,” in Proc. OFC’2002, ww2, 2002.

X. Liu, S. Chandrasekhar, B. Zhu, and D. Peckham, “Efficient Digital Coherent Detection of A 1.2-Tb/s 24carrier no-guard-interval CO-OFDM signal by simultaneously detecting multiple carriers per sampling,” OFC. OWO2, (2010).

K. Shimano, Y. Takigawa, M. Koga, and K. Sato, “Development of photonic MPLS router,” in Proc. ECOC’01, Tu.F.22, 2001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The principle of multi-channel optical frequency-locked multi-carrier source generation based on a gain-independent multi-channel recirculating frequency shifter loop.

Fig. 2
Fig. 2

(a) The experimental setup for the MCMC generation based on a gain-independent dual-carrier injection. (b) The optical spectrum after I/Q modulator when the RFS loop is open; (c) The transfer function of two channels with TOFs and WSS when the ECLs are turned off without SSB modulation.

Fig. 3
Fig. 3

(a) The output of the RFS loop without seed source when there are only DEMUX filters; (b) The output of the RFS loop without seed source when both DEMUX and MUX filters are used.

Fig. 4
Fig. 4

The optical spectra for the case with only DEMUX and without MUX filter (a) only Channel 1, (b) only Channel 2 as well as (c) both Channel 1 and Channel 2, respectively (all at 0.02-nm resolution).

Fig. 5
Fig. 5

The optical spectra for the case with both DEMUX and MUX filters (a) only Channel 1, (b) only Channel 2 as well as (c) both Channel 1 and 2, respectively (all at 0.02-nm resolution).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E out (t)= E I (t)+jβ E Q (t) E in J 1 ( π 2 R)exp(j2π f s t)
F n (t)= g rn exp( a rn ) J 1 ( π 2 R)exp(j2π f s t)exp(j θ n )
E out_M (t)= m=0 M n=1 N E o exp[j2π( f n +m f s )t+ ϕ n ]exp(jm θ n )

Metrics