Abstract

We present a new, integrated all-optical multiplexer for wavelength grooming of many WDM channels into a single TDM channel. The chips were realized in a novel generic InP foundry process. For design and mask layout of the multiplexer circuits, we developed a simple equivalent circuit, representing the incorporated wavelength converter. With the chips realized, successful WDM to TDM transmultiplexing is demonstrated, as well as multiplexing of clock and NRZ data.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ellis, D. Cotter, S. Ibrahim, R. Weerasuriya, C. W. Chow, J. Leuthold, W. Freude, S. Sygletos, P. Vorreau, R. Bonk, D. Hillerkuss, I. Tomkos, A. Tzanakaki, C. Kouloumentas, D. J. Richardson, P. Petropoulos, F. Parmigiani, G. Zarris, and D. Simeonidou, “Optical interconnection of core and metro networks [Invited],” J. Opt. Netw.7(11), 928–935 (2008).
    [CrossRef]
  2. P. Vorreau, S. Sygletos, F. Parmigiani, D. Hillerkuss, R. Bonk, P. Petropoulos, D. J. Richardson, G. Zarris, D. Simeonidou, D. Klonidis, I. Tomkos, R. Weerasuriya, S. Ibrahim, A. D. Ellis, D. Cotter, R. Morais, P. Monteiro, S. Ben Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Optical grooming switch with regenerative functionality for transparent interconnection of networks,” Opt. Express17(17), 15173–15185 (2009).
    [CrossRef] [PubMed]
  3. X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron.16(5), 1441–1447 (2010).
    [CrossRef]
  4. M. Hayashi, H. Tanaka, K. Ohara, T. Otani, and M. Suzuki, “OTDM transmitter using WDM-TDM conversion with an electroabsorption wavelength converter,” J. Lightwave Technol.20(2), 236–242 (2002).
    [CrossRef]
  5. G. Zarris, P. Vorreau, D. Hillerkuss, S. K. Ibrahim, R. Weerasuriya, A. D. Ellis, J. Leuthold, and D. Simeonidou, “WDM-to-TDM traffic grooming by means of asynchronous retiming,” in Proceedings Optical Fiber Communication Conf. (OFC 2009), paper OThJ6 (2009).
  6. J. L. Areal, H. Hu, E. Palushani, H. C. H. Mulvad, A. T. Clausen, M. Berger, L. K. Oxenlowe, and P. Jeppesen, “Synchronization and NRZ-to-RZ conversion of 10 GB/s Ethernet-like data packets and subsequent optical TDM multiplexing to 330 Gbit/s,” in Proceedings Optical Fiber Communication Conf. (OFC 2011), OThN5 (2011).
  7. S. K. Ibrahim, D. Hillerkuss, R. Weerasuriya, G. Zarris, D. Simeonidou, J. Leuthold, and A. D. Ellis, “Novel 42.65 Gbit/s dual gate asynchronous digital optical regenerator using a single MZM,” in Proceedings ECOC 2008, Tu.4.D.3 (2008).
  8. D. Hillerkuss, A. Ellis, G. Zarris, D. Simeonidou, J. Leuthold, and D. Cotter, “40 Gbit/s asynchronous digital optical regenerator,” Opt. Express16(23), 18889–18894 (2008).
    [CrossRef] [PubMed]
  9. C. Meuer, C. Schmidt-Langhorst, R. Bonk, H. Schmeckebier, D. Arsenijević, G. Fiol, A. Galperin, J. Leuthold, C. Schubert, and D. Bimberg, “80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering,” Opt. Express19(6), 5134–5142 (2011).
    [CrossRef] [PubMed]
  10. A. Marculescu, S. Sygletos, J. Li, D. Karki, D. Hillerkuss, S. Ben-Ezra, S. Tsadka, W. Freude, and J. Leuthold, “RZ to CSRZ format and wave length conversionwith regenerative properties,” in Proceedings Optical Fiber Communication Conf. (OFC 2009), OThS1 (2009).
  11. M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectronics5(5), 187–194 (2011).
    [CrossRef]

2011

2010

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron.16(5), 1441–1447 (2010).
[CrossRef]

2009

2008

2002

Ambrosius, H.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectronics5(5), 187–194 (2011).
[CrossRef]

Arsenijevic, D.

Ben Ezra, S.

Bente, E.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectronics5(5), 187–194 (2011).
[CrossRef]

Bimberg, D.

Bogoni, A.

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron.16(5), 1441–1447 (2010).
[CrossRef]

Bonk, R.

Chow, C. W.

Cotter, D.

Ellis, A.

Ellis, A. D.

Fiol, G.

Freude, W.

Galperin, A.

Grote, N.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectronics5(5), 187–194 (2011).
[CrossRef]

Hayashi, M.

Hillerkuss, D.

Ibrahim, S.

Klonidis, D.

Kouloumentas, C.

Leijtens, X.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectronics5(5), 187–194 (2011).
[CrossRef]

Leuthold, J.

Meuer, C.

Monteiro, P.

Morais, R.

Nuccio, S. R.

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron.16(5), 1441–1447 (2010).
[CrossRef]

Ohara, K.

Otani, T.

Parmigiani, F.

Petropoulos, P.

Richardson, D. J.

Robbins, D.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectronics5(5), 187–194 (2011).
[CrossRef]

Scaffardi, M.

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron.16(5), 1441–1447 (2010).
[CrossRef]

Schell, M.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectronics5(5), 187–194 (2011).
[CrossRef]

Schmeckebier, H.

Schmidt-Langhorst, C.

Schubert, C.

Simeonidou, D.

Smit, M.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectronics5(5), 187–194 (2011).
[CrossRef]

Suzuki, M.

Sygletos, S.

Tanaka, H.

Tomkos, I.

Tsadka, S.

Tzanakaki, A.

Van der Tol, J.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectronics5(5), 187–194 (2011).
[CrossRef]

Vorreau, P.

Wale, M.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectronics5(5), 187–194 (2011).
[CrossRef]

Weerasuriya, R.

Willner, A. E.

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron.16(5), 1441–1447 (2010).
[CrossRef]

Wu, X.

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron.16(5), 1441–1447 (2010).
[CrossRef]

Yilmaz, O. F.

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron.16(5), 1441–1447 (2010).
[CrossRef]

Zarris, G.

IEEE J. Sel. Top. Quantum Electron.

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron.16(5), 1441–1447 (2010).
[CrossRef]

IET Optoelectronics

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectronics5(5), 187–194 (2011).
[CrossRef]

J. Lightwave Technol.

J. Opt. Netw.

Opt. Express

Other

G. Zarris, P. Vorreau, D. Hillerkuss, S. K. Ibrahim, R. Weerasuriya, A. D. Ellis, J. Leuthold, and D. Simeonidou, “WDM-to-TDM traffic grooming by means of asynchronous retiming,” in Proceedings Optical Fiber Communication Conf. (OFC 2009), paper OThJ6 (2009).

J. L. Areal, H. Hu, E. Palushani, H. C. H. Mulvad, A. T. Clausen, M. Berger, L. K. Oxenlowe, and P. Jeppesen, “Synchronization and NRZ-to-RZ conversion of 10 GB/s Ethernet-like data packets and subsequent optical TDM multiplexing to 330 Gbit/s,” in Proceedings Optical Fiber Communication Conf. (OFC 2011), OThN5 (2011).

S. K. Ibrahim, D. Hillerkuss, R. Weerasuriya, G. Zarris, D. Simeonidou, J. Leuthold, and A. D. Ellis, “Novel 42.65 Gbit/s dual gate asynchronous digital optical regenerator using a single MZM,” in Proceedings ECOC 2008, Tu.4.D.3 (2008).

A. Marculescu, S. Sygletos, J. Li, D. Karki, D. Hillerkuss, S. Ben-Ezra, S. Tsadka, W. Freude, and J. Leuthold, “RZ to CSRZ format and wave length conversionwith regenerative properties,” in Proceedings Optical Fiber Communication Conf. (OFC 2009), OThS1 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

A dual purpose integrated InP multiplexer chip, and its potential use for wavelength λ-grooming the upstream traffic in the interfaces from access to metro network.

Fig. 2
Fig. 2

Overview of trans multiplexer circuits in two consecutive Memphis project runs.

Fig. 3
Fig. 3

Example of angled, lensed fiber arrays coupled to chip on universal carrier.

Fig. 4
Fig. 4

Schematic design of an ‘all optical’ multiplexer circuit. From left to right: input amplifiers at E and B, WLC annex spatial filter, first delay interferometer filter with delay τ, second delay interferometer filter with delay 2τ, output amplifiers at C.

Fig. 5
Fig. 5

Optical microscope top view of a 1x4 mm2 InP ‘all optical’ transmultiplexer chip (label #10 C). Each gain section has a single (larger) rectangular bond pad, whereas each phase shift section has two (small) circular bond pads (of which actually only one is used in mounted devices).

Fig. 6
Fig. 6

Wave Length Converter Equivalent circuits: one for the real and for the imaginary part of the field modulation index. For the real part all G = G whereas for the imaginary part all G = G.

Fig. 7
Fig. 7

The evolution from X-phase modulation to X-frequency modulation, with increasing input pulse width (B).

Fig. 8
Fig. 8

Simulated response pulses (from outputs C’s), filtered after a wavelength conversion with X-phase and X-frequency modulation of comparable strength. Upper trace: linear power scale; lower trace: same pulses on dB scale. For reference the input stimulus pulses (to B) are also shown.

Fig. 9
Fig. 9

A photographer’s impression of the experimental set up in its built up phase: 1 = general overview, 2 = fiber holder tables of two 6-axis stages, 3 = chip carrier with chip and FPC’s, 4 = lensed fiber arrays coupled to WDM to TDM multiplexer chip.

Fig. 10
Fig. 10

Experimental set up for on ship sub-component, integrated component and overall performance testing, of the WDM to TDM multiplexer chip denoted MUX. Acronyms used in the Fig. are: SYNTH = synthesizer; PIN = pin photodide; MLL = modelocked laser, PPG = pulse pattern generator; MZM = Mach Zehnder modulator; EAM = electro absorption modulator; cw = continous wave; pc = polarization control.

Fig. 11
Fig. 11

Experimental set up for testing the clock x NRZ data multiplex capabilities of the chip MUX. Please note differences and similarities with the set up of Fig. 9, in particular at the optical input side.

Fig. 12
Fig. 12

Measurement of the cross talk between (data input B → data output D) and (cw input E → wavelength converted & subsequently filtered outputs C1 and C2’s)

Fig. 13
Fig. 13

Schematic overview of the electrical connections to wavelength converter plus spatial filter, to the first differential interferometer filter and to the second differential filter.

Fig. 14
Fig. 14

Electrical tuning of Second Order from Anti-symmetric to Symmetrical Filter operation, with associated filter characteristics, output spectra and eye diagrams with RZ 20 Gb/s PRBS data

Fig. 15
Fig. 15

Experimental demonstration of 2 x 10 Gb/s WDM → 1 x 20 Gb/s TDM transmultiplexing

Fig. 16
Fig. 16

All optical multiplexing of NRZ data x clock → narrow pulse RZ data ( = Required multiplex step, prior to the actual WDM to TDM transmultiplexing)

Metrics