Abstract

We propose and study a practical design of a Germanium photodetector implemented on a Silicon-on-insulator substrate to reach the critical coupling regime under vertical illumination at 1310 nm wavelength. With appropriate optimization procedures, a high efficiency bandwidth product larger than 50 GHz and a large 3dB spectral full width around 30 nm can be obtained given realistic material parameters and fabrication constraints. Our device is fully compatible to the state-of-art CMOS process technology, and may serve as a high performance, low cost solution for the optical receiver in Silicon photonics based optical interconnects.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
    [CrossRef]
  2. H. Yu, S. Ren, W. S. Jung, A. K. Okyay, D. A. B. Miller, and K. C. Saraswat, “High-efficiency p-i-n photodetectors on selective-area-grown Ge for monolithic integration,” IEEE Electron Device Lett.30(11), 1161–1163 (2009).
    [CrossRef]
  3. J. Joo, S. Kim, I. G. Kim, K.-S. Jang, and G. Kim, “High-sensitivity 10 Gbps Ge-on-Si photoreceiver operating at λ~1.55 μm,” Opt. Express18(16), 16474–16479 (2010).
    [CrossRef] [PubMed]
  4. J. Osmond, L. Vivien, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, and Y. Lecunff, “40 Gb/s surface-illuminated Ge-on-Si photodetectors,” Appl. Phys. Lett.95(15), 151116 (2009).
    [CrossRef]
  5. S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett.21(13), 920–922 (2009).
    [CrossRef]
  6. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express15(21), 13965–13971 (2007).
    [CrossRef] [PubMed]
  7. L. Colace, V. Sorianello, M. Balbi, and G. Assanto, “Germanium near infrared detector in Silicon on insulator,” Appl. Phys. Lett.91(2), 021107 (2007).
    [CrossRef]
  8. D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section Silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009).
    [CrossRef]
  9. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express19(25), 24897–24904 (2011).
    [CrossRef] [PubMed]
  10. A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Double-stage taper for coupling between SOI waveguides and single-mode fiber,” J. Lightwave Technol.26(24), 3860–3865 (2008).
    [CrossRef]
  11. N. Na and T. Yin, “Misalignment-tolerant spot-size converter for efficient coupling between single-mode fibers and integrated optical receivers,” IEEE Photon. J.4(1), 187–193 (2012).
    [CrossRef]
  12. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-on-insulator platform,” Opt. Express18(17), 18278–18283 (2010).
    [CrossRef] [PubMed]
  13. N. Na, H. Frish, I.-W. Hsieh, O. Harel, R. George, A. Barkai, and H. Rong, “Efficient broadband Silicon-on-insulator grating coupler with low backreflection,” Opt. Lett.36(11), 2101–2103 (2011).
    [CrossRef] [PubMed]
  14. K. Kishino, M. S. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27(8), 2025–2034 (1991).
    [CrossRef]
  15. M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” Appl. Phys. Rev.78(2), 607–639 (1995).
    [CrossRef]
  16. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
    [CrossRef] [PubMed]
  17. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett.14(4), 483–485 (2002).
    [CrossRef]
  18. M. K. Emsley, O. Dosunmu, and M. S. Ünlü, “High-speed resonant-cavity-enhanced Silicon photodetectors on reflecting Silicon-on-insulator substrates,” IEEE Photon. Technol. Lett.14(4), 519–521 (2002).
    [CrossRef]
  19. O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Ünlü, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
    [CrossRef]
  20. M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard eeceiver modules,” IEEE Photon. Technol. Lett.18(23), 2442–2444 (2006).
    [CrossRef]
  21. S. M. Sze, Physics of Semiconductor Device, 2nd ed. (John Wiley & Sons, 1981).
  22. C.-K. Tseng, J.-D. Tian, W.-C. Hung, K.-N. Ku, C.-W. Tseng, Y.-S. Liu, N. Na, and M.-C. M. Lee, “Self-aligned microbonded Ge/Si PIN waveguide photodetector,” post-deadline session, 9th IEEE International Conference on Group IV Photonics (GFP), 29–31 Aug. (2012).
  23. Lumerical Solutions, Inc., http://www.lumerical.com/ .
  24. C.-H. Chen, K. Tetz, and Y. Fainman, “Resonant-cavity-enhanced p-i-n photodiode with a broad quantum-efficiency spectrum by use of an anomalous-dispersion mirror,” Appl. Opt.44(29), 6131–6140 (2005).
    [CrossRef] [PubMed]

2012 (1)

N. Na and T. Yin, “Misalignment-tolerant spot-size converter for efficient coupling between single-mode fibers and integrated optical receivers,” IEEE Photon. J.4(1), 187–193 (2012).
[CrossRef]

2011 (2)

2010 (3)

2009 (4)

H. Yu, S. Ren, W. S. Jung, A. K. Okyay, D. A. B. Miller, and K. C. Saraswat, “High-efficiency p-i-n photodetectors on selective-area-grown Ge for monolithic integration,” IEEE Electron Device Lett.30(11), 1161–1163 (2009).
[CrossRef]

J. Osmond, L. Vivien, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, and Y. Lecunff, “40 Gb/s surface-illuminated Ge-on-Si photodetectors,” Appl. Phys. Lett.95(15), 151116 (2009).
[CrossRef]

S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett.21(13), 920–922 (2009).
[CrossRef]

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section Silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (1)

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard eeceiver modules,” IEEE Photon. Technol. Lett.18(23), 2442–2444 (2006).
[CrossRef]

2005 (2)

C.-H. Chen, K. Tetz, and Y. Fainman, “Resonant-cavity-enhanced p-i-n photodiode with a broad quantum-efficiency spectrum by use of an anomalous-dispersion mirror,” Appl. Opt.44(29), 6131–6140 (2005).
[CrossRef] [PubMed]

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Ünlü, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

2002 (2)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett.14(4), 483–485 (2002).
[CrossRef]

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, “High-speed resonant-cavity-enhanced Silicon photodetectors on reflecting Silicon-on-insulator substrates,” IEEE Photon. Technol. Lett.14(4), 519–521 (2002).
[CrossRef]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

1995 (1)

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” Appl. Phys. Rev.78(2), 607–639 (1995).
[CrossRef]

1991 (1)

K. Kishino, M. S. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27(8), 2025–2034 (1991).
[CrossRef]

Absil, P.

Arsenault, L.

K. Kishino, M. S. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27(8), 2025–2034 (1991).
[CrossRef]

Asghari, M.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section Silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009).
[CrossRef]

Assanto, G.

L. Colace, V. Sorianello, M. Balbi, and G. Assanto, “Germanium near infrared detector in Silicon on insulator,” Appl. Phys. Lett.91(2), 021107 (2007).
[CrossRef]

Balbi, M.

L. Colace, V. Sorianello, M. Balbi, and G. Assanto, “Germanium near infrared detector in Silicon on insulator,” Appl. Phys. Lett.91(2), 021107 (2007).
[CrossRef]

Barkai, A.

Berroth, M.

S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett.21(13), 920–922 (2009).
[CrossRef]

Bogaerts, W.

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

Cannon, D. D.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Ünlü, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

Cassan, E.

J. Osmond, L. Vivien, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, and Y. Lecunff, “40 Gb/s surface-illuminated Ge-on-Si photodetectors,” Appl. Phys. Lett.95(15), 151116 (2009).
[CrossRef]

Chang, H.-H.

Chen, C.-H.

Chetrit, Y.

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express15(21), 13965–13971 (2007).
[CrossRef] [PubMed]

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard eeceiver modules,” IEEE Photon. Technol. Lett.18(23), 2442–2444 (2006).
[CrossRef]

Chyi, J.-I.

K. Kishino, M. S. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27(8), 2025–2034 (1991).
[CrossRef]

Cohen, R.

Colace, L.

L. Colace, V. Sorianello, M. Balbi, and G. Assanto, “Germanium near infrared detector in Silicon on insulator,” Appl. Phys. Lett.91(2), 021107 (2007).
[CrossRef]

Crozat, P.

J. Osmond, L. Vivien, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, and Y. Lecunff, “40 Gb/s surface-illuminated Ge-on-Si photodetectors,” Appl. Phys. Lett.95(15), 151116 (2009).
[CrossRef]

Cunningham, J.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section Silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009).
[CrossRef]

Damlencourt, J.-F.

J. Osmond, L. Vivien, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, and Y. Lecunff, “40 Gb/s surface-illuminated Ge-on-Si photodetectors,” Appl. Phys. Lett.95(15), 151116 (2009).
[CrossRef]

Davids, P. S.

DeRose, C. T.

Dong, P.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section Silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009).
[CrossRef]

Dosunmu, O.

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard eeceiver modules,” IEEE Photon. Technol. Lett.18(23), 2442–2444 (2006).
[CrossRef]

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, “High-speed resonant-cavity-enhanced Silicon photodetectors on reflecting Silicon-on-insulator substrates,” IEEE Photon. Technol. Lett.14(4), 519–521 (2002).
[CrossRef]

Dosunmu, O. I.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Ünlü, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

Elek, N.

Emsley, M. K.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Ünlü, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, “High-speed resonant-cavity-enhanced Silicon photodetectors on reflecting Silicon-on-insulator substrates,” IEEE Photon. Technol. Lett.14(4), 519–521 (2002).
[CrossRef]

Fainman, Y.

Fédéli, J.-M.

J. Osmond, L. Vivien, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, and Y. Lecunff, “40 Gb/s surface-illuminated Ge-on-Si photodetectors,” Appl. Phys. Lett.95(15), 151116 (2009).
[CrossRef]

Feng, D.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section Silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009).
[CrossRef]

Feng, N.-N.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section Silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009).
[CrossRef]

Fisher, M.

Fong, J.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section Silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009).
[CrossRef]

Frish, H.

Gabay, R.

George, R.

Harel, O.

Hsieh, I.-W.

Izhaky, N.

Jang, K.-S.

Jones, R.

Joo, J.

Jung, W. S.

H. Yu, S. Ren, W. S. Jung, A. K. Okyay, D. A. B. Miller, and K. C. Saraswat, “High-efficiency p-i-n photodetectors on selective-area-grown Ge for monolithic integration,” IEEE Electron Device Lett.30(11), 1161–1163 (2009).
[CrossRef]

Kaschel, M.

S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett.21(13), 920–922 (2009).
[CrossRef]

Kasper, E.

S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett.21(13), 920–922 (2009).
[CrossRef]

Kim, D.

Kim, G.

Kim, I. G.

Kim, S.

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Ünlü, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

Kishino, K.

K. Kishino, M. S. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27(8), 2025–2034 (1991).
[CrossRef]

Klinger, S.

S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett.21(13), 920–922 (2009).
[CrossRef]

Krishnamoorthy, A. V.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section Silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009).
[CrossRef]

Kung, C.-C.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section Silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009).
[CrossRef]

Lecunff, Y.

J. Osmond, L. Vivien, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, and Y. Lecunff, “40 Gb/s surface-illuminated Ge-on-Si photodetectors,” Appl. Phys. Lett.95(15), 151116 (2009).
[CrossRef]

Lepage, G.

Liang, H.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section Silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009).
[CrossRef]

Liao, S.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section Silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009).
[CrossRef]

Liu, A.

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

Malik, B. H.

Marris-Morini, D.

J. Osmond, L. Vivien, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, and Y. Lecunff, “40 Gb/s surface-illuminated Ge-on-Si photodetectors,” Appl. Phys. Lett.95(15), 151116 (2009).
[CrossRef]

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

Miller, D. A. B.

H. Yu, S. Ren, W. S. Jung, A. K. Okyay, D. A. B. Miller, and K. C. Saraswat, “High-efficiency p-i-n photodetectors on selective-area-grown Ge for monolithic integration,” IEEE Electron Device Lett.30(11), 1161–1163 (2009).
[CrossRef]

Morkoc, H.

K. Kishino, M. S. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27(8), 2025–2034 (1991).
[CrossRef]

Morse, M.

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard eeceiver modules,” IEEE Photon. Technol. Lett.18(23), 2442–2444 (2006).
[CrossRef]

Morse, M. M.

Na, N.

N. Na and T. Yin, “Misalignment-tolerant spot-size converter for efficient coupling between single-mode fibers and integrated optical receivers,” IEEE Photon. J.4(1), 187–193 (2012).
[CrossRef]

N. Na, H. Frish, I.-W. Hsieh, O. Harel, R. George, A. Barkai, and H. Rong, “Efficient broadband Silicon-on-insulator grating coupler with low backreflection,” Opt. Lett.36(11), 2101–2103 (2011).
[CrossRef] [PubMed]

Oehme, M.

S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett.21(13), 920–922 (2009).
[CrossRef]

Okyay, A. K.

H. Yu, S. Ren, W. S. Jung, A. K. Okyay, D. A. B. Miller, and K. C. Saraswat, “High-efficiency p-i-n photodetectors on selective-area-grown Ge for monolithic integration,” IEEE Electron Device Lett.30(11), 1161–1163 (2009).
[CrossRef]

Osmond, J.

J. Osmond, L. Vivien, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, and Y. Lecunff, “40 Gb/s surface-illuminated Ge-on-Si photodetectors,” Appl. Phys. Lett.95(15), 151116 (2009).
[CrossRef]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

Paniccia, M.

Paniccia, M. J.

Reed, J.

K. Kishino, M. S. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27(8), 2025–2034 (1991).
[CrossRef]

Ren, S.

H. Yu, S. Ren, W. S. Jung, A. K. Okyay, D. A. B. Miller, and K. C. Saraswat, “High-efficiency p-i-n photodetectors on selective-area-grown Ge for monolithic integration,” IEEE Electron Device Lett.30(11), 1161–1163 (2009).
[CrossRef]

Roelkens, G.

Rong, H.

Rubin, D.

Saraswat, K. C.

H. Yu, S. Ren, W. S. Jung, A. K. Okyay, D. A. B. Miller, and K. C. Saraswat, “High-efficiency p-i-n photodetectors on selective-area-grown Ge for monolithic integration,” IEEE Electron Device Lett.30(11), 1161–1163 (2009).
[CrossRef]

Sarid, G.

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express15(21), 13965–13971 (2007).
[CrossRef] [PubMed]

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard eeceiver modules,” IEEE Photon. Technol. Lett.18(23), 2442–2444 (2006).
[CrossRef]

Selvaraja, S.

Shafiiha, R.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section Silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009).
[CrossRef]

Sorianello, V.

L. Colace, V. Sorianello, M. Balbi, and G. Assanto, “Germanium near infrared detector in Silicon on insulator,” Appl. Phys. Lett.91(2), 021107 (2007).
[CrossRef]

Starbuck, A. L.

Strite, S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” Appl. Phys. Rev.78(2), 607–639 (1995).
[CrossRef]

Tetz, K.

Trotter, D. C.

Ünlü, M. S.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Ünlü, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, “High-speed resonant-cavity-enhanced Silicon photodetectors on reflecting Silicon-on-insulator substrates,” IEEE Photon. Technol. Lett.14(4), 519–521 (2002).
[CrossRef]

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” Appl. Phys. Rev.78(2), 607–639 (1995).
[CrossRef]

K. Kishino, M. S. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27(8), 2025–2034 (1991).
[CrossRef]

Vahala, K. J.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

Van Thourhout, D.

Verheyen, P.

Vermeulen, D.

Vivien, L.

J. Osmond, L. Vivien, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, and Y. Lecunff, “40 Gb/s surface-illuminated Ge-on-Si photodetectors,” Appl. Phys. Lett.95(15), 151116 (2009).
[CrossRef]

Watts, M. R.

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett.14(4), 483–485 (2002).
[CrossRef]

Yin, T.

N. Na and T. Yin, “Misalignment-tolerant spot-size converter for efficient coupling between single-mode fibers and integrated optical receivers,” IEEE Photon. J.4(1), 187–193 (2012).
[CrossRef]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express15(21), 13965–13971 (2007).
[CrossRef] [PubMed]

Yu, H.

H. Yu, S. Ren, W. S. Jung, A. K. Okyay, D. A. B. Miller, and K. C. Saraswat, “High-efficiency p-i-n photodetectors on selective-area-grown Ge for monolithic integration,” IEEE Electron Device Lett.30(11), 1161–1163 (2009).
[CrossRef]

Zheng, D.

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section Silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009).
[CrossRef]

Zortman, W. A.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. Osmond, L. Vivien, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, and Y. Lecunff, “40 Gb/s surface-illuminated Ge-on-Si photodetectors,” Appl. Phys. Lett.95(15), 151116 (2009).
[CrossRef]

L. Colace, V. Sorianello, M. Balbi, and G. Assanto, “Germanium near infrared detector in Silicon on insulator,” Appl. Phys. Lett.91(2), 021107 (2007).
[CrossRef]

D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section Silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009).
[CrossRef]

Appl. Phys. Rev. (1)

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” Appl. Phys. Rev.78(2), 607–639 (1995).
[CrossRef]

IEEE Electron Device Lett. (1)

H. Yu, S. Ren, W. S. Jung, A. K. Okyay, D. A. B. Miller, and K. C. Saraswat, “High-efficiency p-i-n photodetectors on selective-area-grown Ge for monolithic integration,” IEEE Electron Device Lett.30(11), 1161–1163 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kishino, M. S. Ünlü, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron.27(8), 2025–2034 (1991).
[CrossRef]

IEEE Photon. J. (1)

N. Na and T. Yin, “Misalignment-tolerant spot-size converter for efficient coupling between single-mode fibers and integrated optical receivers,” IEEE Photon. J.4(1), 187–193 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett.21(13), 920–922 (2009).
[CrossRef]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett.14(4), 483–485 (2002).
[CrossRef]

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, “High-speed resonant-cavity-enhanced Silicon photodetectors on reflecting Silicon-on-insulator substrates,” IEEE Photon. Technol. Lett.14(4), 519–521 (2002).
[CrossRef]

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Ünlü, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett.17(1), 175–177 (2005).
[CrossRef]

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard eeceiver modules,” IEEE Photon. Technol. Lett.18(23), 2442–2444 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000).
[CrossRef] [PubMed]

Other (3)

S. M. Sze, Physics of Semiconductor Device, 2nd ed. (John Wiley & Sons, 1981).

C.-K. Tseng, J.-D. Tian, W.-C. Hung, K.-N. Ku, C.-W. Tseng, Y.-S. Liu, N. Na, and M.-C. M. Lee, “Self-aligned microbonded Ge/Si PIN waveguide photodetector,” post-deadline session, 9th IEEE International Conference on Group IV Photonics (GFP), 29–31 Aug. (2012).

Lumerical Solutions, Inc., http://www.lumerical.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) A vertically illuminated Ge on SOI photodetector. (b) The same as in (a) but with a dielectric DBR mirror deposited on top and a metallic V-groove mirror fabricated at bottom.

Fig. 2
Fig. 2

An effective cavity structure (RHS) to model the central portion of the Ge photodetector in Fig. 1 (LHS).

Fig. 3
Fig. 3

The required Ge thickness to reach the critical coupling plotted as a function of metallic mirror reflectance and dielectric mirror reflectance.

Fig. 4
Fig. 4

Ge photodetector (a) efficiency, (b) bandwidth, and (c) efficiency-bandwidth-product plotted as a function of metallic mirror reflectance and dielectric mirror reflectance at a critical coupling.

Fig. 5
Fig. 5

(a) Cavity order, (b) a-Si thickness, and (c) FWHM of cavity resonance plotted as a function of metallic mirror reflectance and dielectric mirror reflectance at a critical coupling.

Fig. 6
Fig. 6

(a) The Al mirror reflectance plotted as a function of BOX thickness. (b) The total reflectance of our device plotted as a function of incoming laser wavelength. The imaginary part of refractive index of Ge and Al are “turned” on/off to illustrate the effect of critical coupling. The simulations are done via 2D FDTD method with Bloch boundary condition in the horizontal direction.

Fig. 7
Fig. 7

The quantum efficiency plotted as a function of incoming laser wavelength with adjustment in (a) a-Si layer thickness and (b) BOX layer thickness. The solid lines are simulated via 2D FDTD method with Bloch boundary condition in the horizontal direction, and the dashed lines are simulated via full-structure 3D FDTD method.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R= |b | 2 |a | 2 = γ 2 + r 2 2γrcosθ 1+ γ 2 r 2 2γrcosθ
γ=r i.e. | r M | e 4π λ 0 κ Ge t Ge =| r D |,
η= 1 e 8π λ 0 κ Ge t Ge (1| r M | 2 )+(1 e 8π λ 0 κ Ge t Ge )
BW= 1 2π ( t Ge 2.4 v s ) 2 + (RC) 2
Δλ= λ 0 πm 1|r | 2 |r|

Metrics