Abstract

An electrically controlled high-speed all-fiber switch is investigated. It is based on a monolithic Mach-Zehnder interferometer using a Gemini fiber. The fiber is provided with internal electrodes for active control of the phase using high-voltage electrical pulses. The demonstrated switching speed is 20 ns. The monolithic design guarantees that the off- and on-states are attained simultaneously for a broad range of wavelengths (50 nm). The interferometer can be switched-off using a second electrode, providing a 15 ns long optical pulse.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. S. Smith, “Femotosecond switching in a dual-core-fiber nonlinear coupler,” Opt. Lett.13(10), 904–906 (1988).
    [CrossRef] [PubMed]
  2. B. K. Nayar, N. Finlayson, N. J. Doran, S. T. Davey, D. L. Williams, and J. W. Arkwright, “All-optical switching in a 200-m twin-core fiber nonlinear Mach-Zehnder interferometer,” Opt. Lett.16(6), 408–410 (1991).
    [CrossRef] [PubMed]
  3. J. E. Heebner and R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett.24(12), 847–849 (1999).
    [CrossRef] [PubMed]
  4. I. V. Kabakova, B. Corcoran, J. A. Bolger, M. C. de Sterke, and B. J. Eggleton, “All-optical self-switching in optimized phase-shifted fiber Bragg grating,” Opt. Express17(7), 5083–5088 (2009).
    [CrossRef] [PubMed]
  5. P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag.40(3), 88–95 (2002).
    [CrossRef]
  6. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16 x 16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol.19(3), 371–379 (2001).
    [CrossRef]
  7. G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol.12(10), 1807–1819 (1994).
    [CrossRef]
  8. R. Roy, P. A. Schulz, and A. Walther, “Acousto-optic modulator as an electronically selectable unidirectional device in a ring laser,” Opt. Lett.12(9), 672–674 (1987).
    [CrossRef] [PubMed]
  9. M. V. Andrés, J. L. Cruz, A. Díez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5(2), 93–99 (2008).
    [CrossRef]
  10. M. Bello-Jiménez, C. Cuadrado-Laborde, D. Sáez-Rodríguez, A. Diez, J. L. Cruz, and M. V. Andrés, “Actively mode-locked fiber ring laser by intermodal acousto-optic modulation,” Opt. Lett.35(22), 3781–3783 (2010).
    [CrossRef] [PubMed]
  11. O. Tarasenko and W. Margulis, “Electro-optical fiber modulation in a Sagnac interferometer,” Opt. Lett.32(11), 1356–1358 (2007).
    [CrossRef] [PubMed]
  12. M. Malmström, W. Margulis, O. Tarasenko, V. Pasiskevicius, and F. Laurell, “Soliton generation from an actively mode-locked fiber laser incorporating an electro-optic fiber modulator,” Opt. Express20(3), 2905–2910 (2012).
    [CrossRef] [PubMed]
  13. J. Li, N. Myrén, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2x2 poled fiber switch,” IEEE Photon. Technol. Lett.17(12), 2571–2573 (2005).
    [CrossRef]
  14. A. C. Boucouvalas and G. Georgiou, “Fibre-optic interferometric tunable switch using the thermo-optic effect,” Electron. Lett.21, 512–514 (1985).
  15. R. Bahuguna, M. Mina, and R. J. Weber, “Mach-Zehnder interferometric switch utilizing Faraday rotation,” IEEE Trans. Magn.43(6), 2680–2682 (2007).
    [CrossRef]
  16. P. Rugeland, C. Sterner, and W. Margulis, “Monolithic interferometers using Gemini fiber,” IEEE Photon. Technol. Lett.23(14), 1001–1003 (2011).
    [CrossRef]
  17. W. Margulis, Z. Yu, M. Malmström, P. Rugeland, H. Knape, and O. Tarasenko, “High-speed electrical switching in optical fibers,” Appl. Opt.50(25), E65–E75 (2011).
    [CrossRef]
  18. Z. Yu, O. Tarasenko, W. Margulis, and P.-Y. Fonjallaz, “Birefringence switching of Bragg gratings in fibers with internal electrodes,” Opt. Express16(11), 8229–8235 (2008).
    [CrossRef] [PubMed]

2012 (1)

2011 (2)

P. Rugeland, C. Sterner, and W. Margulis, “Monolithic interferometers using Gemini fiber,” IEEE Photon. Technol. Lett.23(14), 1001–1003 (2011).
[CrossRef]

W. Margulis, Z. Yu, M. Malmström, P. Rugeland, H. Knape, and O. Tarasenko, “High-speed electrical switching in optical fibers,” Appl. Opt.50(25), E65–E75 (2011).
[CrossRef]

2010 (1)

2009 (1)

2008 (2)

Z. Yu, O. Tarasenko, W. Margulis, and P.-Y. Fonjallaz, “Birefringence switching of Bragg gratings in fibers with internal electrodes,” Opt. Express16(11), 8229–8235 (2008).
[CrossRef] [PubMed]

M. V. Andrés, J. L. Cruz, A. Díez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5(2), 93–99 (2008).
[CrossRef]

2007 (2)

R. Bahuguna, M. Mina, and R. J. Weber, “Mach-Zehnder interferometric switch utilizing Faraday rotation,” IEEE Trans. Magn.43(6), 2680–2682 (2007).
[CrossRef]

O. Tarasenko and W. Margulis, “Electro-optical fiber modulation in a Sagnac interferometer,” Opt. Lett.32(11), 1356–1358 (2007).
[CrossRef] [PubMed]

2005 (1)

J. Li, N. Myrén, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2x2 poled fiber switch,” IEEE Photon. Technol. Lett.17(12), 2571–2573 (2005).
[CrossRef]

2002 (1)

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag.40(3), 88–95 (2002).
[CrossRef]

2001 (1)

1999 (1)

1994 (1)

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol.12(10), 1807–1819 (1994).
[CrossRef]

1991 (1)

1988 (1)

1987 (1)

1985 (1)

A. C. Boucouvalas and G. Georgiou, “Fibre-optic interferometric tunable switch using the thermo-optic effect,” Electron. Lett.21, 512–514 (1985).

Andrés, M. V.

Arkwright, J. W.

Bahuguna, R.

R. Bahuguna, M. Mina, and R. J. Weber, “Mach-Zehnder interferometric switch utilizing Faraday rotation,” IEEE Trans. Magn.43(6), 2680–2682 (2007).
[CrossRef]

Bello-Jiménez, M.

Belmonte, M.

J. Li, N. Myrén, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2x2 poled fiber switch,” IEEE Photon. Technol. Lett.17(12), 2571–2573 (2005).
[CrossRef]

Bolger, J. A.

Boucouvalas, A. C.

A. C. Boucouvalas and G. Georgiou, “Fibre-optic interferometric tunable switch using the thermo-optic effect,” Electron. Lett.21, 512–514 (1985).

Boyd, R. W.

Bulmer, C. H.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol.12(10), 1807–1819 (1994).
[CrossRef]

Burns, W. K.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol.12(10), 1807–1819 (1994).
[CrossRef]

Capmany, J.

J. Li, N. Myrén, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2x2 poled fiber switch,” IEEE Photon. Technol. Lett.17(12), 2571–2573 (2005).
[CrossRef]

Corcoran, B.

Cruz, J. L.

Cuadrado-Laborde, C.

Davey, S. T.

De Dobbelaere, P.

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag.40(3), 88–95 (2002).
[CrossRef]

de Sterke, M. C.

Delgado-Pinar, M.

M. V. Andrés, J. L. Cruz, A. Díez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5(2), 93–99 (2008).
[CrossRef]

Diez, A.

Díez, A.

M. V. Andrés, J. L. Cruz, A. Díez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5(2), 93–99 (2008).
[CrossRef]

Doran, N. J.

Eggleton, B. J.

Falta, K.

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag.40(3), 88–95 (2002).
[CrossRef]

Finlayson, N.

Fonjallaz, P.-Y.

Friberg, S. R.

Georgiou, G.

A. C. Boucouvalas and G. Georgiou, “Fibre-optic interferometric tunable switch using the thermo-optic effect,” Electron. Lett.21, 512–514 (1985).

Gloeckner, S.

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag.40(3), 88–95 (2002).
[CrossRef]

Goh, T.

Gopalakrishnan, G. K.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol.12(10), 1807–1819 (1994).
[CrossRef]

Greenblatt, A. S.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol.12(10), 1807–1819 (1994).
[CrossRef]

Hattori, K.

Heebner, J. E.

Himeno, A.

Kabakova, I. V.

Knape, H.

Laurell, F.

Li, J.

J. Li, N. Myrén, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2x2 poled fiber switch,” IEEE Photon. Technol. Lett.17(12), 2571–2573 (2005).
[CrossRef]

Malmström, M.

Margulis, W.

McElhanon, R. W.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol.12(10), 1807–1819 (1994).
[CrossRef]

Mina, M.

R. Bahuguna, M. Mina, and R. J. Weber, “Mach-Zehnder interferometric switch utilizing Faraday rotation,” IEEE Trans. Magn.43(6), 2680–2682 (2007).
[CrossRef]

Myrén, N.

J. Li, N. Myrén, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2x2 poled fiber switch,” IEEE Photon. Technol. Lett.17(12), 2571–2573 (2005).
[CrossRef]

Nayar, B. K.

Ohmori, Y.

Okuno, M.

Ortega, B.

J. Li, N. Myrén, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2x2 poled fiber switch,” IEEE Photon. Technol. Lett.17(12), 2571–2573 (2005).
[CrossRef]

Pasiskevicius, V.

Pastor, D.

J. Li, N. Myrén, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2x2 poled fiber switch,” IEEE Photon. Technol. Lett.17(12), 2571–2573 (2005).
[CrossRef]

Patra, S.

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag.40(3), 88–95 (2002).
[CrossRef]

Pérez-Millán, P.

M. V. Andrés, J. L. Cruz, A. Díez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5(2), 93–99 (2008).
[CrossRef]

Pruneri, V.

J. Li, N. Myrén, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2x2 poled fiber switch,” IEEE Photon. Technol. Lett.17(12), 2571–2573 (2005).
[CrossRef]

Puerto, G.

J. Li, N. Myrén, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2x2 poled fiber switch,” IEEE Photon. Technol. Lett.17(12), 2571–2573 (2005).
[CrossRef]

Roy, R.

Rugeland, P.

W. Margulis, Z. Yu, M. Malmström, P. Rugeland, H. Knape, and O. Tarasenko, “High-speed electrical switching in optical fibers,” Appl. Opt.50(25), E65–E75 (2011).
[CrossRef]

P. Rugeland, C. Sterner, and W. Margulis, “Monolithic interferometers using Gemini fiber,” IEEE Photon. Technol. Lett.23(14), 1001–1003 (2011).
[CrossRef]

Sáez-Rodríguez, D.

Schulz, P. A.

Sfez, B. G.

Silberberg, Y.

Smith, P. S.

Sterner, C.

P. Rugeland, C. Sterner, and W. Margulis, “Monolithic interferometers using Gemini fiber,” IEEE Photon. Technol. Lett.23(14), 1001–1003 (2011).
[CrossRef]

Tarasenko, O.

Walther, A.

Weber, R. J.

R. Bahuguna, M. Mina, and R. J. Weber, “Mach-Zehnder interferometric switch utilizing Faraday rotation,” IEEE Trans. Magn.43(6), 2680–2682 (2007).
[CrossRef]

Weiner, A. M.

Williams, D. L.

Yasu, M.

Yu, Z.

Appl. Opt. (1)

Electron. Lett. (1)

A. C. Boucouvalas and G. Georgiou, “Fibre-optic interferometric tunable switch using the thermo-optic effect,” Electron. Lett.21, 512–514 (1985).

IEEE Commun. Mag. (1)

P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag.40(3), 88–95 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. Rugeland, C. Sterner, and W. Margulis, “Monolithic interferometers using Gemini fiber,” IEEE Photon. Technol. Lett.23(14), 1001–1003 (2011).
[CrossRef]

J. Li, N. Myrén, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2x2 poled fiber switch,” IEEE Photon. Technol. Lett.17(12), 2571–2573 (2005).
[CrossRef]

IEEE Trans. Magn. (1)

R. Bahuguna, M. Mina, and R. J. Weber, “Mach-Zehnder interferometric switch utilizing Faraday rotation,” IEEE Trans. Magn.43(6), 2680–2682 (2007).
[CrossRef]

J. Lightwave Technol. (2)

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol.12(10), 1807–1819 (1994).
[CrossRef]

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16 x 16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol.19(3), 371–379 (2001).
[CrossRef]

Laser Phys. Lett. (1)

M. V. Andrés, J. L. Cruz, A. Díez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5(2), 93–99 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Cross-section of (a) Gemini fiber, (b) G2H8 fiber and (c) two adjacent SMF28.

Fig. 2
Fig. 2

Schematic setup of monolithic Mach-Zehnder modulator. The central part consists of a section of G2H8 fiber filled with 7 cm of Bi-Sn with one of the electrodes contacted through side-polishing. Outside this are two fused couplers made from Gemini fiber, which in turn is spliced to SMF for input and output coupling

Fig. 3
Fig. 3

Transmission spectra of balanced Gemini MZI.

Fig. 4
Fig. 4

High-voltage pulse applied to the electrode of the G2H8 in the MZI and the same pulse split in two with tee-connector and one 4-m-long electrical delay line which gives 2/3 of the voltage (4/9 of the power).

Fig. 5
Fig. 5

Results from COMSOL simulation at progressing times for temperature and refractive index in x and y direction.

Fig. 6
Fig. 6

Simulation of phase shift in the two cores and the difference between them induced by applying voltage to two electrodes. (a) Rapid positive phase-shift for the y-polarization and negative phase-shift for the x-polarization due to acoustic pulse during first 50 ns. Off-switching is seen in the difference between them. (b) Slow positive phase shift due to thermal dissipation from the electrode after tens of microseconds for both polarization states, shown for one of the cores. The difference between the cores shows that the second pulse cancels the thermal effects.

Fig. 7
Fig. 7

Measurement with component 2 and simulation of long-term effects for both x- and y-polarization when activating a single electrode with a 46 ns, 1.12 kV pulse.

Fig. 8
Fig. 8

Optical signal through Gemini Mach-Zehnder interferometer (component 1) switched at 1540 nm by 1.5 kV, 46 ns electrical pulse. (a) Signal switched with 20 ns risetime exploiting pressure from expanding electrode. (b) Thermal effects take over after 20 µs.

Fig. 9
Fig. 9

(a). Pulse generation for wavelengths 1550 nm of dual electrode Mach-Zehnder switch when applying 1.5 kV split between the two electrodes with 20 ns delay for bar- and cross-state, (b) Experimentally measured thermal stabilization of cross state on long time-scale due to application of double pulses, measured at 1550 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n x = n 3 2 ( p 11 ε x + p 12 ( ε y + ε z ) )+nξΔT, Δ n y = n 3 2 ( p 11 ε y + p 12 ( ε x + ε z ) )+nξΔT,
Δ φ i = 2π λ ( LΔ n i + n i ΔL )

Metrics