Abstract

An achromatic axially symmetric wave plate (AAS-WP) is proposed that is based on Fresnel reflections. The wave plate does not introduce spatial dispersion. It provides retardation in the wavelength domain with an axially symmetric azimuthal angle. The optical configuration, a numerical simulation, and the optical properties of the AAS-WP are described. It is composed of PMMA. A pair of them is manufactured on a lathe. In the numerical simulation, the achromatic angle is estimated and is used to design the devices. They generate an axially symmetric polarized beam. The birefringence distribution is measured in order to evaluate the AAS-WPs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Dennis, K. O'Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities, ” in Progress in Optics, (Elsevier, Amsterdam, 2009).
  2. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009).
    [CrossRef]
  3. S. Matsuo, “Matrix calculus for axially symmetric polarized beam,” Opt. Express19(13), 12815–12824 (2011).
    [CrossRef] [PubMed]
  4. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000).
    [CrossRef] [PubMed]
  5. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the Angular Momentum of light,” Phys. Rev. Lett.107(5), 053601 (2011).
    [CrossRef] [PubMed]
  6. G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett.108(19), 190401 (2012).
    [CrossRef] [PubMed]
  7. J. R. Fontana and R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys.54(8), 4285–4288 (1983).
    [CrossRef]
  8. A. V. Nesterov and V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phy. Appl. Phys. (Berl.)33, 1817–1822 (2000).
  9. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express18(21), 22305–22313 (2010).
    [CrossRef] [PubMed]
  10. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
    [CrossRef]
  11. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett.21(11), 827–829 (1996).
    [CrossRef] [PubMed]
  12. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
    [CrossRef]
  13. S. C. McEldowney, D. M. Shemo, and R. A. Chipman, “Vortex retarders produced from photo-aligned liquid crystal polymers,” Opt. Express16(10), 7295–7308 (2008).
    [CrossRef] [PubMed]
  14. Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett.35(15), 1271–1272 (1999).
    [CrossRef]
  15. Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001).
    [CrossRef]
  16. M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
    [CrossRef]
  17. Y. Kozawa and S. Sato, “Single higher-order transverse mode operation of a radially polarized Nd:YAG laser using an annularly reflectivity-modulated photonic crystal coupler,” Opt. Lett.33(19), 2278–2280 (2008).
    [CrossRef] [PubMed]
  18. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Polychromatic vectorial vortex formed by geometric phase elements,” Opt. Lett.32(7), 847–849 (2007).
    [CrossRef] [PubMed]
  19. M. Endo, “Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett.33(15), 1771–1773 (2008).
    [CrossRef] [PubMed]
  20. M. Endo, M. Sasaki, and R. Koseki, “Analysis of an optical resonator formed by a pair of specially shaped axicons,” J. Opt. Soc. Am. A29(4), 507–512 (2012).
    [CrossRef] [PubMed]
  21. G. Milione, H. I. Sztul, D. A. Nolan, J. Kim, M. Etienne, J. McCarthy, J. Wang, and R. R. Alfano, “Cylindrical vector beam generation from a multi elliptical core optical fiber,” ” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuB2.
  22. G. A. Swartzlander., “A chromatic optical vortex lens,” Opt. Lett.31(13), 2042–2044 (2006).
    [CrossRef] [PubMed]
  23. X. C. Yuan, J. Lin, J. Bu, and R. E. Burge, “Achromatic design for the generation of optical vortices based on radial spiral phase plates,” Opt. Express16(18), 13599–13605 (2008).
    [CrossRef] [PubMed]
  24. Y. Tokizane, K. Oka, and R. Morita, “Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion,” Opt. Express17(17), 14517–14525 (2009).
    [CrossRef] [PubMed]
  25. Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express17(26), 24198–24207 (2009).
    [CrossRef] [PubMed]
  26. F. Mooney, “A modification of the Fresnel rhomb,” J. Opt. Soc. Am.42(3), 181–182 (1952).
    [CrossRef]
  27. M. Born and E. Wolf, Principle of Optics 7th ed. (Cambridge Univ. press., UK, 1999).
  28. G. Yun, K. Crabtree, and R. A. Chipman, “Three-dimensional polarization ray-tracing calculus I: definition and diattenuation,” Appl. Opt.50(18), 2855–2865 (2011).
    [CrossRef] [PubMed]
  29. G. Yun, S. C. McClain, and R. A. Chipman, “Three-dimensional polarization ray-tracing calculus II: retardance,” Appl. Opt.50(18), 2866–2874 (2011).
    [CrossRef] [PubMed]

2012 (2)

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett.108(19), 190401 (2012).
[CrossRef] [PubMed]

M. Endo, M. Sasaki, and R. Koseki, “Analysis of an optical resonator formed by a pair of specially shaped axicons,” J. Opt. Soc. Am. A29(4), 507–512 (2012).
[CrossRef] [PubMed]

2011 (5)

G. Yun, K. Crabtree, and R. A. Chipman, “Three-dimensional polarization ray-tracing calculus I: definition and diattenuation,” Appl. Opt.50(18), 2855–2865 (2011).
[CrossRef] [PubMed]

G. Yun, S. C. McClain, and R. A. Chipman, “Three-dimensional polarization ray-tracing calculus II: retardance,” Appl. Opt.50(18), 2866–2874 (2011).
[CrossRef] [PubMed]

S. Matsuo, “Matrix calculus for axially symmetric polarized beam,” Opt. Express19(13), 12815–12824 (2011).
[CrossRef] [PubMed]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the Angular Momentum of light,” Phys. Rev. Lett.107(5), 053601 (2011).
[CrossRef] [PubMed]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

2010 (1)

2009 (4)

2008 (4)

2007 (1)

2006 (1)

2001 (1)

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001).
[CrossRef]

2000 (2)

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000).
[CrossRef] [PubMed]

A. V. Nesterov and V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phy. Appl. Phys. (Berl.)33, 1817–1822 (2000).

1999 (1)

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett.35(15), 1271–1272 (1999).
[CrossRef]

1996 (1)

1991 (1)

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

1983 (1)

J. R. Fontana and R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys.54(8), 4285–4288 (1983).
[CrossRef]

1952 (1)

Ahmed, M. A.

Alfano, R. R.

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett.108(19), 190401 (2012).
[CrossRef] [PubMed]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the Angular Momentum of light,” Phys. Rev. Lett.107(5), 053601 (2011).
[CrossRef] [PubMed]

Beresna, M.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Biener, G.

Bomzon, Z.

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001).
[CrossRef]

Brown, T.

Bu, J.

Burge, R. E.

Chipman, R. A.

Crabtree, K.

Eggeling, C.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Endo, M.

Evans, S.

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett.108(19), 190401 (2012).
[CrossRef] [PubMed]

Fontana, J. R.

J. R. Fontana and R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys.54(8), 4285–4288 (1983).
[CrossRef]

Gahagan, K. T.

Gecevicius, M.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Gertus, T.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

Graf, T.

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Hasman, E.

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Polychromatic vectorial vortex formed by geometric phase elements,” Opt. Lett.32(7), 847–849 (2007).
[CrossRef] [PubMed]

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001).
[CrossRef]

Hell, S. W.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Kawakami, S.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett.35(15), 1271–1272 (1999).
[CrossRef]

Kawashima, T.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett.35(15), 1271–1272 (1999).
[CrossRef]

Kazansky, P. G.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Kleiner, V.

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Polychromatic vectorial vortex formed by geometric phase elements,” Opt. Lett.32(7), 847–849 (2007).
[CrossRef] [PubMed]

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001).
[CrossRef]

Koseki, R.

Kozawa, Y.

Kraus, M.

Lin, J.

Matsuo, S.

McClain, S. C.

McEldowney, S. C.

Michalowski, A.

Milione, G.

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett.108(19), 190401 (2012).
[CrossRef] [PubMed]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the Angular Momentum of light,” Phys. Rev. Lett.107(5), 053601 (2011).
[CrossRef] [PubMed]

Mooney, F.

Morita, R.

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phy. Appl. Phys. (Berl.)33, 1817–1822 (2000).

Niv, A.

Niziev, V. G.

A. V. Nesterov and V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phy. Appl. Phys. (Berl.)33, 1817–1822 (2000).

Nolan, D. A.

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett.108(19), 190401 (2012).
[CrossRef] [PubMed]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the Angular Momentum of light,” Phys. Rev. Lett.107(5), 053601 (2011).
[CrossRef] [PubMed]

Ohtera, Y.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett.35(15), 1271–1272 (1999).
[CrossRef]

Oka, K.

Pantell, R. H.

J. R. Fontana and R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys.54(8), 4285–4288 (1983).
[CrossRef]

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Sasaki, M.

Sato, S.

Sato, T.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett.35(15), 1271–1272 (1999).
[CrossRef]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

Shemo, D. M.

Shimatake, K.

Sun, S. T.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

Swartzlander, G. A.

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

Sztul, H. I.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the Angular Momentum of light,” Phys. Rev. Lett.107(5), 053601 (2011).
[CrossRef] [PubMed]

Tamamura, T.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett.35(15), 1271–1272 (1999).
[CrossRef]

Tanda, S.

Toda, Y.

Tokizane, Y.

Tsubota, M.

Voss, A.

Weber, R.

Youngworth, K.

Yuan, X. C.

Yun, G.

Zhan, Q.

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001).
[CrossRef]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Electron. Lett. (1)

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett.35(15), 1271–1272 (1999).
[CrossRef]

J. Appl. Phys. (1)

J. R. Fontana and R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys.54(8), 4285–4288 (1983).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phy. Appl. Phys. (Berl.) (1)

A. V. Nesterov and V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phy. Appl. Phys. (Berl.)33, 1817–1822 (2000).

Nat. Photonics (1)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Nature (1)

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991).
[CrossRef]

Opt. Express (7)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the Angular Momentum of light,” Phys. Rev. Lett.107(5), 053601 (2011).
[CrossRef] [PubMed]

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett.108(19), 190401 (2012).
[CrossRef] [PubMed]

Other (3)

M. R. Dennis, K. O'Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities, ” in Progress in Optics, (Elsevier, Amsterdam, 2009).

G. Milione, H. I. Sztul, D. A. Nolan, J. Kim, M. Etienne, J. McCarthy, J. Wang, and R. R. Alfano, “Cylindrical vector beam generation from a multi elliptical core optical fiber,” ” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuB2.

M. Born and E. Wolf, Principle of Optics 7th ed. (Cambridge Univ. press., UK, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical configuration of the Fresnel rhomb.

Fig. 2
Fig. 2

Optical configuration of the achromatic axially symmetric waveplate.

Fig. 3
Fig. 3

Wavelength dependence of the phase difference as a function of the slope angle of the axially symmetric wave plate.

Fig. 4
Fig. 4

Photograph of the achromatic axially symmetric wave plate.

Fig. 5
Fig. 5

Comparison of the experimental and simulated images. Right-hand diagrams: experimental images; left-hand diagrams: simulated images.

Fig. 6
Fig. 6

Birefringence distributions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ=4 tan 1 n 2 (λ) sin 2 β1 n(λ)sinβtanβ
M(x,y)=[ 1 0 0 0 0 cos 2 2θ+ sin 2 2θcosΔ sin2θcos2θ( 1cosΔ ) sin2θsinΔ 0 sin2θcos2θ( 1cosΔ ) sin 2 2θ+ cos 2 2θcosΔ cos2θsinΔ 0 sin2θsinΔ cos2θsinΔ sinΔ ]
J(x,y)=[ e iΔ/2 cos 2 θ+ e iΔ/2 sin 2 θ isin( Δ/2 )sin2θ isin( Δ/2 )sin2θ e iΔ/2 cos 2 ( θ )+ e iΔ/2 sin 2 θ ]

Metrics