Abstract

The performance of an optically pumped Mx magnetometer with miniaturized Cs cell at earth’s magnetic field strength (50μT) is investigated. Operation using detuned high intensity laser light is shown to be superior to the conventional resonant operation in terms of the projected shot-noise-limited ( 50fTHz) and the actual noise-limited sensitivity using a noise compensation method. The Zeeman light shift effect, emerging due to the off-resonant circularly polarized laser radiation and leading to a strong orientational dependence of the measurement, is suppressed by averaging two identical magnetometer configurations pumped with oppositely circularly polarized light. A residual heading error within the range of 14nT, limited by the present experimental characterization setup, was achieved.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559–1565 (1957).
    [CrossRef]
  2. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227 – 234 (2007).
    [CrossRef]
  3. H. B. Dang, A. C. Maloof, and M.V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
    [CrossRef]
  4. W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
    [CrossRef]
  5. A. L. Bloom, “Principles of operation of the rubidium vapor magnetometer,” Appl. Opt. 1, 61–68 (1962).
    [CrossRef]
  6. S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38, 239–247 (2006).
    [CrossRef]
  7. B. S. Mathur, H. Tang, and W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11–19 (1968).
    [CrossRef]
  8. E. B. Aleksandrov and A. K. Vershovskii, “Modern radio-optical methods in quantum magnetometry,” Phys. Usp. 52, 573–601 (2009).
    [CrossRef]
  9. T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84, 043416 (2011).
    [CrossRef]
  10. T. Yabuzaki and T. Ogawa, “Frequency shifts of self-oscillating magnetometer with cesium vapor,” J. Appl. Phys. 45, 1342–1355 (1974).
    [CrossRef]
  11. S. Woetzel, V. Schultze, R. IJsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82, 033111 (2011).
    [CrossRef] [PubMed]
  12. R. IJsselsteijn, M. Kielpinski, S. Woetzel, T. Scholtes, E. Kessler, R. Stolz, V. Schultze, and H.-G. Meyer, “A full optically operated magnetometer array: an experimental study,” Rev. Sci. Instrum. 83, 113106 (2012).
    [CrossRef] [PubMed]
  13. V. Schultze, R. IJsselsteijn, T. Scholtes, S. Woetzel, and H.-G. Meyer, “Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer,” Opt. Express 20, 14201–14212 (2012).
    [CrossRef] [PubMed]
  14. V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100, 717–724 (2010).
    [CrossRef]
  15. V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357 (2008).
    [CrossRef]
  16. S. Appelt, A. B. Baranga, A. R. Young, and W. Happer, “Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells,” Phys. Rev. A 59, 2078–2084 (1999).
    [CrossRef]

2012

R. IJsselsteijn, M. Kielpinski, S. Woetzel, T. Scholtes, E. Kessler, R. Stolz, V. Schultze, and H.-G. Meyer, “A full optically operated magnetometer array: an experimental study,” Rev. Sci. Instrum. 83, 113106 (2012).
[CrossRef] [PubMed]

V. Schultze, R. IJsselsteijn, T. Scholtes, S. Woetzel, and H.-G. Meyer, “Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer,” Opt. Express 20, 14201–14212 (2012).
[CrossRef] [PubMed]

2011

S. Woetzel, V. Schultze, R. IJsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82, 033111 (2011).
[CrossRef] [PubMed]

T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84, 043416 (2011).
[CrossRef]

2010

H. B. Dang, A. C. Maloof, and M.V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[CrossRef]

V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100, 717–724 (2010).
[CrossRef]

2009

E. B. Aleksandrov and A. K. Vershovskii, “Modern radio-optical methods in quantum magnetometry,” Phys. Usp. 52, 573–601 (2009).
[CrossRef]

2008

V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357 (2008).
[CrossRef]

2007

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227 – 234 (2007).
[CrossRef]

2006

S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38, 239–247 (2006).
[CrossRef]

1999

S. Appelt, A. B. Baranga, A. R. Young, and W. Happer, “Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells,” Phys. Rev. A 59, 2078–2084 (1999).
[CrossRef]

1974

T. Yabuzaki and T. Ogawa, “Frequency shifts of self-oscillating magnetometer with cesium vapor,” J. Appl. Phys. 45, 1342–1355 (1974).
[CrossRef]

1972

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[CrossRef]

1968

B. S. Mathur, H. Tang, and W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11–19 (1968).
[CrossRef]

1962

1957

W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559–1565 (1957).
[CrossRef]

Aleksandrov, E. B.

E. B. Aleksandrov and A. K. Vershovskii, “Modern radio-optical methods in quantum magnetometry,” Phys. Usp. 52, 573–601 (2009).
[CrossRef]

Anders, S.

S. Woetzel, V. Schultze, R. IJsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82, 033111 (2011).
[CrossRef] [PubMed]

Appelt, S.

S. Appelt, A. B. Baranga, A. R. Young, and W. Happer, “Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells,” Phys. Rev. A 59, 2078–2084 (1999).
[CrossRef]

Baranga, A. B.

S. Appelt, A. B. Baranga, A. R. Young, and W. Happer, “Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells,” Phys. Rev. A 59, 2078–2084 (1999).
[CrossRef]

Bell, W. E.

W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559–1565 (1957).
[CrossRef]

Bison, G.

S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38, 239–247 (2006).
[CrossRef]

Bloom, A. L.

A. L. Bloom, “Principles of operation of the rubidium vapor magnetometer,” Appl. Opt. 1, 61–68 (1962).
[CrossRef]

W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559–1565 (1957).
[CrossRef]

Budker, D.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227 – 234 (2007).
[CrossRef]

Dang, H. B.

H. B. Dang, A. C. Maloof, and M.V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[CrossRef]

Gerginov, V.

V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357 (2008).
[CrossRef]

Groeger, S.

S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38, 239–247 (2006).
[CrossRef]

Happer, W.

S. Appelt, A. B. Baranga, A. R. Young, and W. Happer, “Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells,” Phys. Rev. A 59, 2078–2084 (1999).
[CrossRef]

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[CrossRef]

B. S. Mathur, H. Tang, and W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11–19 (1968).
[CrossRef]

Hollberg, L.

V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357 (2008).
[CrossRef]

IJsselsteijn, R.

V. Schultze, R. IJsselsteijn, T. Scholtes, S. Woetzel, and H.-G. Meyer, “Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer,” Opt. Express 20, 14201–14212 (2012).
[CrossRef] [PubMed]

R. IJsselsteijn, M. Kielpinski, S. Woetzel, T. Scholtes, E. Kessler, R. Stolz, V. Schultze, and H.-G. Meyer, “A full optically operated magnetometer array: an experimental study,” Rev. Sci. Instrum. 83, 113106 (2012).
[CrossRef] [PubMed]

T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84, 043416 (2011).
[CrossRef]

S. Woetzel, V. Schultze, R. IJsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82, 033111 (2011).
[CrossRef] [PubMed]

V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100, 717–724 (2010).
[CrossRef]

Kessler, E.

R. IJsselsteijn, M. Kielpinski, S. Woetzel, T. Scholtes, E. Kessler, R. Stolz, V. Schultze, and H.-G. Meyer, “A full optically operated magnetometer array: an experimental study,” Rev. Sci. Instrum. 83, 113106 (2012).
[CrossRef] [PubMed]

Kielpinski, M.

R. IJsselsteijn, M. Kielpinski, S. Woetzel, T. Scholtes, E. Kessler, R. Stolz, V. Schultze, and H.-G. Meyer, “A full optically operated magnetometer array: an experimental study,” Rev. Sci. Instrum. 83, 113106 (2012).
[CrossRef] [PubMed]

Kitching, J.

V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357 (2008).
[CrossRef]

Knappe, S.

V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357 (2008).
[CrossRef]

Maloof, A. C.

H. B. Dang, A. C. Maloof, and M.V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[CrossRef]

Mathur, B. S.

B. S. Mathur, H. Tang, and W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11–19 (1968).
[CrossRef]

Meyer, H.-G.

R. IJsselsteijn, M. Kielpinski, S. Woetzel, T. Scholtes, E. Kessler, R. Stolz, V. Schultze, and H.-G. Meyer, “A full optically operated magnetometer array: an experimental study,” Rev. Sci. Instrum. 83, 113106 (2012).
[CrossRef] [PubMed]

V. Schultze, R. IJsselsteijn, T. Scholtes, S. Woetzel, and H.-G. Meyer, “Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer,” Opt. Express 20, 14201–14212 (2012).
[CrossRef] [PubMed]

S. Woetzel, V. Schultze, R. IJsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82, 033111 (2011).
[CrossRef] [PubMed]

T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84, 043416 (2011).
[CrossRef]

V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100, 717–724 (2010).
[CrossRef]

Ogawa, T.

T. Yabuzaki and T. Ogawa, “Frequency shifts of self-oscillating magnetometer with cesium vapor,” J. Appl. Phys. 45, 1342–1355 (1974).
[CrossRef]

Romalis, M.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227 – 234 (2007).
[CrossRef]

Romalis, M.V.

H. B. Dang, A. C. Maloof, and M.V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[CrossRef]

Schenker, J.-L.

S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38, 239–247 (2006).
[CrossRef]

Scholtes, T.

R. IJsselsteijn, M. Kielpinski, S. Woetzel, T. Scholtes, E. Kessler, R. Stolz, V. Schultze, and H.-G. Meyer, “A full optically operated magnetometer array: an experimental study,” Rev. Sci. Instrum. 83, 113106 (2012).
[CrossRef] [PubMed]

V. Schultze, R. IJsselsteijn, T. Scholtes, S. Woetzel, and H.-G. Meyer, “Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer,” Opt. Express 20, 14201–14212 (2012).
[CrossRef] [PubMed]

T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84, 043416 (2011).
[CrossRef]

Schultze, V.

V. Schultze, R. IJsselsteijn, T. Scholtes, S. Woetzel, and H.-G. Meyer, “Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer,” Opt. Express 20, 14201–14212 (2012).
[CrossRef] [PubMed]

R. IJsselsteijn, M. Kielpinski, S. Woetzel, T. Scholtes, E. Kessler, R. Stolz, V. Schultze, and H.-G. Meyer, “A full optically operated magnetometer array: an experimental study,” Rev. Sci. Instrum. 83, 113106 (2012).
[CrossRef] [PubMed]

T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84, 043416 (2011).
[CrossRef]

S. Woetzel, V. Schultze, R. IJsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82, 033111 (2011).
[CrossRef] [PubMed]

V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100, 717–724 (2010).
[CrossRef]

Schulz, T.

S. Woetzel, V. Schultze, R. IJsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82, 033111 (2011).
[CrossRef] [PubMed]

Shah, V.

V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357 (2008).
[CrossRef]

Stolz, R.

R. IJsselsteijn, M. Kielpinski, S. Woetzel, T. Scholtes, E. Kessler, R. Stolz, V. Schultze, and H.-G. Meyer, “A full optically operated magnetometer array: an experimental study,” Rev. Sci. Instrum. 83, 113106 (2012).
[CrossRef] [PubMed]

S. Woetzel, V. Schultze, R. IJsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82, 033111 (2011).
[CrossRef] [PubMed]

Tang, H.

B. S. Mathur, H. Tang, and W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11–19 (1968).
[CrossRef]

Vershovskii, A. K.

E. B. Aleksandrov and A. K. Vershovskii, “Modern radio-optical methods in quantum magnetometry,” Phys. Usp. 52, 573–601 (2009).
[CrossRef]

Weis, A.

S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38, 239–247 (2006).
[CrossRef]

Woetzel, S.

R. IJsselsteijn, M. Kielpinski, S. Woetzel, T. Scholtes, E. Kessler, R. Stolz, V. Schultze, and H.-G. Meyer, “A full optically operated magnetometer array: an experimental study,” Rev. Sci. Instrum. 83, 113106 (2012).
[CrossRef] [PubMed]

V. Schultze, R. IJsselsteijn, T. Scholtes, S. Woetzel, and H.-G. Meyer, “Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer,” Opt. Express 20, 14201–14212 (2012).
[CrossRef] [PubMed]

S. Woetzel, V. Schultze, R. IJsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82, 033111 (2011).
[CrossRef] [PubMed]

T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84, 043416 (2011).
[CrossRef]

Wynands, R.

S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38, 239–247 (2006).
[CrossRef]

Yabuzaki, T.

T. Yabuzaki and T. Ogawa, “Frequency shifts of self-oscillating magnetometer with cesium vapor,” J. Appl. Phys. 45, 1342–1355 (1974).
[CrossRef]

Young, A. R.

S. Appelt, A. B. Baranga, A. R. Young, and W. Happer, “Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells,” Phys. Rev. A 59, 2078–2084 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. B

V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100, 717–724 (2010).
[CrossRef]

Appl. Phys. Lett.

H. B. Dang, A. C. Maloof, and M.V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[CrossRef]

Eur. Phys. J. D

S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38, 239–247 (2006).
[CrossRef]

IEEE Trans. Instrum. Meas.

V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357 (2008).
[CrossRef]

J. Appl. Phys.

T. Yabuzaki and T. Ogawa, “Frequency shifts of self-oscillating magnetometer with cesium vapor,” J. Appl. Phys. 45, 1342–1355 (1974).
[CrossRef]

Nat. Phys.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227 – 234 (2007).
[CrossRef]

Opt. Express

Phys. Rev.

B. S. Mathur, H. Tang, and W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11–19 (1968).
[CrossRef]

W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559–1565 (1957).
[CrossRef]

Phys. Rev. A

T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84, 043416 (2011).
[CrossRef]

S. Appelt, A. B. Baranga, A. R. Young, and W. Happer, “Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells,” Phys. Rev. A 59, 2078–2084 (1999).
[CrossRef]

Phys. Usp.

E. B. Aleksandrov and A. K. Vershovskii, “Modern radio-optical methods in quantum magnetometry,” Phys. Usp. 52, 573–601 (2009).
[CrossRef]

Rev. Mod. Phys.

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[CrossRef]

Rev. Sci. Instrum.

S. Woetzel, V. Schultze, R. IJsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82, 033111 (2011).
[CrossRef] [PubMed]

R. IJsselsteijn, M. Kielpinski, S. Woetzel, T. Scholtes, E. Kessler, R. Stolz, V. Schultze, and H.-G. Meyer, “A full optically operated magnetometer array: an experimental study,” Rev. Sci. Instrum. 83, 113106 (2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Experimental setup: The two magnetometer channels can be operated independently (switched to A) or channel 2 can be made magnetically insensitive to provide a noise subtraction signal for the magnetometer channel 1 (switched to B). (b) Used cell array assembly filled with 170mbar of nitrogen buffer gas.

Fig. 2
Fig. 2

(a) Cell absorption profile without B1 field, normalized to the F = 4 peak. Increasing the pump laser intensity results in reduced absorption for the F = 3 transitions caused by depletion of the lower hyperfine ground state level. Optimal laser frequency tuning points for conventional mode (black square) and LN mode (red triangle) are indicated. (b) Shot-noise-limited sensitivity optimized for each cell temperature in conventional (black squares) and LN (red triangles) operation mode.

Fig. 3
Fig. 3

(a) Measured Larmor frequency difference as a function of the angle of the magnetic field to the laser beam direction (−90°: antiparallel, 0°: perpendicular, 90° parallel) for the two oppositely circularly polarized configurations σ+ (red dots) and σ (black squares) and the average (blue triangles) of both measurements, magnified in (b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

B s n = G γ 2 e I d c d P q u / d ν ,
B n = V n γ d P q u / d ν

Metrics