Abstract

For the multianode-PMT-based quadrant tracking sensor, one of the tracking error sources is the crosstalk. The crosstalk can be reduced by de-crosstalk algorithm, so the tracking error of the de-crosstalk algorithm for the multianode-PMT-based quadrant tracking sensor are analyzed in theory and verified by experiments. Both the theoretical analysis and the experimental results showed that the spot displacement sensitivity could be improved by the de-crosstalk algorithm, but the spot centroid detecting error increased at the same time. So the de-crosstalk algorithm could not improve the tracking accuracy effectively.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Rao, X. J. Zhang, W. H. Jiang, and G. M. Tang, “Performance comparison of photo counting quadrant tracking system and intensifier CCD tracking system,” Acta Opt. Sin.22(1), 67–73 (2001).
  2. G. A. Tyler and D. L. Fried, “Image-position error associated with a quadrant detector,” J. Opt. Soc. Am.72(6), 804–808 (1982).
    [CrossRef]
  3. D. A. Golimowski, M. Clampin, S. T. Durrance, and R. H. Barkhouser, “High-resolution ground-based coronagraphy using image-motion compensation,” Appl. Opt.31(22), 4405–4416 (1992).
    [CrossRef] [PubMed]
  4. Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayshi, and M. Iye, “Upgrade plans for Subaru AO system,” Proc. SPIE4839, 23–43 (2003).
  5. M. Toyoda, K. Araki, and Y. Suzuki, “Wave-front tilt sensor with two quadrant detectors and its application to a laser beam pointing system,” Appl. Opt.41(12), 2219–2223 (2002).
    [CrossRef] [PubMed]
  6. M. Rome, H. G. Fleck, and D. C. Hines, “The quadrant multiplier phototube, a new star-tracker sensor,” Appl. Opt.3(6), 691–695 (1964).
    [CrossRef]
  7. X. Y. Ma, J. Mu, and C. H. Rao, “Error analysis of four-quadrant-based tracking sensor when dead zone is inevitable,” Acta Phys. Sin.61(7), 072903 (2012).
  8. X. Y. Ma, C. H. Rao, and H. Q. Zheng, “Error analysis of CCD-based point source centroid computation under the background light,” Opt. Express17(10), 8525–8541 (2009).
    [CrossRef] [PubMed]

2012

X. Y. Ma, J. Mu, and C. H. Rao, “Error analysis of four-quadrant-based tracking sensor when dead zone is inevitable,” Acta Phys. Sin.61(7), 072903 (2012).

2009

2003

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayshi, and M. Iye, “Upgrade plans for Subaru AO system,” Proc. SPIE4839, 23–43 (2003).

2002

2001

C. H. Rao, X. J. Zhang, W. H. Jiang, and G. M. Tang, “Performance comparison of photo counting quadrant tracking system and intensifier CCD tracking system,” Acta Opt. Sin.22(1), 67–73 (2001).

1992

1982

1964

Araki, K.

Barkhouser, R. H.

Clampin, M.

Durrance, S. T.

Fleck, H. G.

Fried, D. L.

Gaessler, W.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayshi, and M. Iye, “Upgrade plans for Subaru AO system,” Proc. SPIE4839, 23–43 (2003).

Golimowski, D. A.

Goto, M.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayshi, and M. Iye, “Upgrade plans for Subaru AO system,” Proc. SPIE4839, 23–43 (2003).

Hayano, Y.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayshi, and M. Iye, “Upgrade plans for Subaru AO system,” Proc. SPIE4839, 23–43 (2003).

Hines, D. C.

Iye, M.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayshi, and M. Iye, “Upgrade plans for Subaru AO system,” Proc. SPIE4839, 23–43 (2003).

Jiang, W. H.

C. H. Rao, X. J. Zhang, W. H. Jiang, and G. M. Tang, “Performance comparison of photo counting quadrant tracking system and intensifier CCD tracking system,” Acta Opt. Sin.22(1), 67–73 (2001).

Kamata, Y.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayshi, and M. Iye, “Upgrade plans for Subaru AO system,” Proc. SPIE4839, 23–43 (2003).

Kobayshi, N.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayshi, and M. Iye, “Upgrade plans for Subaru AO system,” Proc. SPIE4839, 23–43 (2003).

Ma, X. Y.

X. Y. Ma, J. Mu, and C. H. Rao, “Error analysis of four-quadrant-based tracking sensor when dead zone is inevitable,” Acta Phys. Sin.61(7), 072903 (2012).

X. Y. Ma, C. H. Rao, and H. Q. Zheng, “Error analysis of CCD-based point source centroid computation under the background light,” Opt. Express17(10), 8525–8541 (2009).
[CrossRef] [PubMed]

Minowa, Y.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayshi, and M. Iye, “Upgrade plans for Subaru AO system,” Proc. SPIE4839, 23–43 (2003).

Mu, J.

X. Y. Ma, J. Mu, and C. H. Rao, “Error analysis of four-quadrant-based tracking sensor when dead zone is inevitable,” Acta Phys. Sin.61(7), 072903 (2012).

Rao, C. H.

X. Y. Ma, J. Mu, and C. H. Rao, “Error analysis of four-quadrant-based tracking sensor when dead zone is inevitable,” Acta Phys. Sin.61(7), 072903 (2012).

X. Y. Ma, C. H. Rao, and H. Q. Zheng, “Error analysis of CCD-based point source centroid computation under the background light,” Opt. Express17(10), 8525–8541 (2009).
[CrossRef] [PubMed]

C. H. Rao, X. J. Zhang, W. H. Jiang, and G. M. Tang, “Performance comparison of photo counting quadrant tracking system and intensifier CCD tracking system,” Acta Opt. Sin.22(1), 67–73 (2001).

Rome, M.

Suzuki, Y.

Takami, H.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayshi, and M. Iye, “Upgrade plans for Subaru AO system,” Proc. SPIE4839, 23–43 (2003).

Takato, N.

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayshi, and M. Iye, “Upgrade plans for Subaru AO system,” Proc. SPIE4839, 23–43 (2003).

Tang, G. M.

C. H. Rao, X. J. Zhang, W. H. Jiang, and G. M. Tang, “Performance comparison of photo counting quadrant tracking system and intensifier CCD tracking system,” Acta Opt. Sin.22(1), 67–73 (2001).

Toyoda, M.

Tyler, G. A.

Zhang, X. J.

C. H. Rao, X. J. Zhang, W. H. Jiang, and G. M. Tang, “Performance comparison of photo counting quadrant tracking system and intensifier CCD tracking system,” Acta Opt. Sin.22(1), 67–73 (2001).

Zheng, H. Q.

Acta Opt. Sin.

C. H. Rao, X. J. Zhang, W. H. Jiang, and G. M. Tang, “Performance comparison of photo counting quadrant tracking system and intensifier CCD tracking system,” Acta Opt. Sin.22(1), 67–73 (2001).

Acta Phys. Sin.

X. Y. Ma, J. Mu, and C. H. Rao, “Error analysis of four-quadrant-based tracking sensor when dead zone is inevitable,” Acta Phys. Sin.61(7), 072903 (2012).

Appl. Opt.

J. Opt. Soc. Am.

Opt. Express

Proc. SPIE

Y. Hayano, H. Takami, W. Gaessler, N. Takato, M. Goto, Y. Kamata, Y. Minowa, N. Kobayshi, and M. Iye, “Upgrade plans for Subaru AO system,” Proc. SPIE4839, 23–43 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a quadrant tracking sensor (1): imaging lens, (2): quadrant detector, (3): focal plane spot

Fig. 2
Fig. 2

Detection of spot centroid

Fig. 3
Fig. 3

Crosstalk distribution diagram

Fig. 4
Fig. 4

The influence of crosstalk on the calculated value of the spot centroid

Fig. 5
Fig. 5

Influence of crosstalk on the sensor’s tracking error

Fig. 6
Fig. 6

Experimental block diagram (1). laser (2). attenuation plane (3). Pinhole (4). parallel light collimator (5). tilt mirror (6). reflect mirror (7). imaging lens (8). matched lens (9). pyramid (10). quadrant detector (11). computer (12). high-voltage amplifier (13). incident wave-front

Fig. 7
Fig. 7

Output photon numbers by quadrant for different spot locations

Fig. 8
Fig. 8

Spot centroid loci and true positions

Fig. 9
Fig. 9

Tracking error

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

{ n 1 = E P s 4 [ erf( ω x 0 2 G s )+erf( x 0 2 G s ) ][ erf( ω y 0 2 G s )+erf( y 0 2 G s ) ] n 2 = E P s 4 [ erf( ω+ x 0 2 G s )erf( x 0 2 G s ) ][ erf( ω y 0 2 G s )+erf( y 0 2 G s ) ] n 3 = E P s 4 [ erf( ω+ x 0 2 G s )erf( x 0 2 G s ) ][ erf( ω+ y 0 2 G s )erf( y 0 2 G s ) ] n 4 = E P s 4 [ erf( ω x 0 2 G s )+erf( x 0 2 G s ) ][ erf( ω+ y 0 2 G s )erf( y 0 2 G s ) ] ,
x c = ( N 1 + N 4 )( N 2 + N 3 ) N 1 + N 2 + N 3 + N 4 , y c = ( N 1 + N 2 )( N 3 + N 4 ) N 1 + N 2 + N 3 + N 4 ,
α x =arctan( x 0 f )= k d x c f , α y =arctan( y 0 f e )= k d y c f ,
k ij = P j P i .
N c =C n s ,
{ x c = ( N 1 + N 4 )( N 2 + N 3 ) ( N 1 + N 2 + N 3 + N 4 ) = 1 k s 1+2 k c + k s n 1 n 2 n 3 + n 4 n 1 + n 2 + n 3 + n 4 y c = ( N 1 + N 2 )( N 3 + N 4 ) ( N 1 + N 2 + N 3 + N 4 ) = 1 k s 1+2 k c + k s n 1 + n 2 n 3 n 4 n 1 + n 2 + n 3 + n 4 .
ρ x = x c / x 0 .
ρ x = 1 k s 1+2 k c + k s ( D a D b )( D a ' + D b ' )( D a + D b )( D a ' D b ' ) ( D a + D b ) 2 ,
σ xc 2 = U N 2 V N 4 σ V N 2 + 1 V N 2 σ U N 2 2 U N V N 3 σ U N V N ,
σ i 2 = N i + l=1,li 4 ( C il 2 n l ) .
σ ij = l=1 4 ( C il C jl n l ) .
σ x c 2 = 1 V N (1 x c 2 )+ 1 V N ( v 1 + v 2 x c 2 ),
σ α x 2 | α x =0 = ( 1 ρ x 0 | x 0 =0 f ) 2 σ x c 2 | x c =0 .
ρ x 0 | x 0 =0 = 1 k s 1+2 k c + k s 2 π G s .
σ x c 2 | x c =0 = 2 k c k s + k s 2 +1 ( 1+2 k c + k s ) 2 1 E P s .
σ α x 2 | α x =0 = 2 k c k s + k s 2 +1 (1 k s ) 2 π G s 2 2E P s f 2 .
n Rs =R N c ,
x R = ( n R 1 + n R 4 )( n R 2 + n R 3 ) n R 1 + n R 2 + n R 3 + n R 4 = ( n 1 + n 4 )( n 2 + n 3 ) n 1 + n 2 + n 3 + n 4 .
ρ x R = ( D a D b )( D a ' + D b ' )( D a + D b )( D a ' D b ' ) ( D a + D b ) 2 .
σ x R 2 = U R 2 V R 4 σ V R 2 + 1 V R 2 σ U R 2 2 U R V R 3 σ U R V R ,
n Ri = l=1 4 ( R il N l ) .
σ n Ri 2 = l=1 4 R il 2 σ N l 2 + m=1 4 n=1 4 R im R in σ ij ,
σ R i R j = m=1 4 n=1 4 R im R jn σ ij .
σ x R 2 = 1 V R ( v R 1 + v R 2 x c 2 ),
ρ x T | x T =0 = 2 π G s .
σ x R 2 | x R =0 = 2 k c k s + k s 2 +1 (1 k s ) 2 1 E P s .
σ α R 2 | α R =0 = 2 k c k s + k s 2 +1 (1 k s ) 2 π G s 2 2E P s f 2 .
k ij = N Aj N Ai ,

Metrics