Abstract

We present a new instrumentation and calibration procedure for terahertz time-domain spectroscopic ellipsometry (THz-TDSE) that is a newly established characterization technique. The experimental setup is capable of providing arbitrary angle of incidence in the range of 15°–85° in the reflection geometry, and with no need for realignment. The setup is also configurable easily into transmission geometry. For this setup, we successfully used hollow core photonic band gap fiber with no pre-chirping in order to deliver a femtosecond laser into a THz photoconductive antenna detector, which is the first demonstration of this kind. The proposed calibration scheme can compensate for the non-ideality of the polarization response of the THz photoconductive antenna detector as well as that of wire grid polarizers used in the setup. In the calibration scheme, the ellipsometric parameters are obtained through a regression algorithm which we have adapted from the conventional regression calibration method developed for rotating element optical ellipsometers, and used here for the first time for THz-TDSE. As a proof-of-principle demonstration, results are presented for a high resistivity silicon substrate as well as an opaque Si substrate with a high phosphorus concentration. We also demonstrate the capacity to measure a few micron thick grown thermal oxide on top of Si. Each sample was characterized by THz-TDSE in reflection geometry with different angle of incidence.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B7, 2006–2015 (1990).
    [CrossRef]
  2. B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol.47, 3807 (2002).
    [CrossRef] [PubMed]
  3. D. Mittleman, R. Jacobsen, R. Neelamani, R. Baraniuk, and M. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B: Lasers Opt.67, 379–390 (1998).
    [CrossRef]
  4. L. Bilbro, R. V. Aguilar, G. Logvenov, O. Pelleg, I. Bozovic, and N. P. Armitage, “Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy,” Nat. Phys.7, 298 (2011).
    [CrossRef]
  5. S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett.79, 3923 (2001).
    [CrossRef]
  6. A. Pashkin, M. Kempa, H. Nemec, F. Kadlec, and P. Kuzel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum.74, 4711 (2003).
    [CrossRef]
  7. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).
  8. T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum.81, 023101 (2010).
    [CrossRef] [PubMed]
  9. A. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, 1990).
  10. K.-L. Barth, D. Bhme, K. Kamars, F. Keilmann, and M. Cardona, “Far-ir spectroscopic ellipsometer,” Thin Solid Films234, 314 – 317 (1993).
    [CrossRef]
  11. J. Bremer, O. Hunderi, K. Fanping, T. Skauli, and E. Wold, “Infrared ellipsometer for the study of surfaces, thin films, and superlattices,” Appl. Opt.31, 471–478 (1992).
    [CrossRef] [PubMed]
  12. C. Bernhard, J. Humlcek, and B. Keimer, “Far-infrared ellipsometry using a synchrotron light source–the dielectric response of the cuprate high Tc superconductors,” Thin Solid Films455, 143 –149 (2004).
  13. J. Kircher, R. Henn, M. Cardona, P. L. Richards, and G. P. Williams, “Far-infrared ellipsometry using synchrotron radiation,” J. Opt. Soc. Am. B14, 705–712 (1997).
    [CrossRef]
  14. T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.79, 3917–3919 (2001).
    [CrossRef]
  15. N. Matsumoto, T. Fujii, K. Kageyama, H. Takagi, T. Nagashima, and M. Hangyo, “Measurement of the soft-mode dispersion in SrTiO3 by terahertz time-domain spectroscopic ellipsometry,” Jpn. J. Appl. Phys.48, 09KC11 (2009).
    [CrossRef]
  16. N. Matsumoto, T. Hosokura, T. Nagashima, and M. Hangyo, “Measurement of the dielectric constant of thin films by terahertz time-domain spectroscopic ellipsometry,” Opt. Lett.36, 265–267 (2011).
    [CrossRef] [PubMed]
  17. A. Rubano, L. Braun, M. Wolf, and T. Kampfrath, “Mid-infrared time-domain ellipsometry: Application to Nb-doped SrTiO3,” Appl. Phys. Lett.101, 081103 (2012).
    [CrossRef]
  18. R. Shimano, Y. Ino, Y. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett.81, 199–201 (2002).
    [CrossRef]
  19. E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H.H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express15, 7047–7057 (2007).
    [CrossRef] [PubMed]
  20. H. Dong, Y. Gong, V. Paulose, and M. Hong, “Polarization state and mueller matrix measurements in terahertz-time domain spectroscopy,” Opt. Commun.282, 3671–3675 (2009).
    [CrossRef]
  21. J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in eutio3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett.106, 217601 (2011).
    [CrossRef] [PubMed]
  22. J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brüne, E. G. Novik, G. V. Astakhov, H. Buhmann, and L. W. Molenkamp, “Surface state charge dynamics of a high-mobility three-dimensional topological insulator,” Phys. Rev. Lett.107, 136803 (2011).
    [CrossRef] [PubMed]
  23. R. V. Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Černe, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett.108, 087403 (2012).
    [CrossRef]
  24. C. M. Morris, R. V. Aguilar, A. V. Stier, and N. P. Armitage, “Polarization modulation time-domain terahertz polarimetry,” Opt. Express20, 12303–12317 (2012).
    [CrossRef] [PubMed]
  25. D. K. George, A. V. Stier, C. T. Ellis, B. D. McCombe, J. Černe, and A. G. Markelz, “Terahertz magneto-optical polarization modulation spectroscopy,” J. Opt. Soc. Am. B29, 1406 (2012).
    [CrossRef]
  26. N. Yasumatsu and S. Watanabe, “T-ray topography by time-domain polarimetry,” Opt. Lett.37, 2706–2708 (2012).
    [CrossRef] [PubMed]
  27. C. J. Hensley, M. A. Foster, B. Shim, and A. L. Gaeta, “Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber,” in “Proceedings of Lasers and Electro-Optics,” (San Jose, Calif., 2008), p. JFG1.
  28. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999), chap. 14.
  29. Y. Gong, H. Dong, and Z. Chen, “Cross-polarization response of a two-contact photoconductive terahertz detector,” Terahertz Sci. Technol.4, 137–148 (2011).
  30. M. Neshat and N. P. Armitage, “Improved measurement of polarization state in terahertz polarization spectroscopy,” Opt. Lett.37, 1811–1813 (2012).
    [CrossRef] [PubMed]
  31. B. Johs, “Regression calibration method for rotating element ellipsometers,” Thin Solid Films234, 395 – 398 (1993).
    [CrossRef]
  32. M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett.56, 1694–1696 (1990).
    [CrossRef]

2012 (6)

2011 (5)

N. Matsumoto, T. Hosokura, T. Nagashima, and M. Hangyo, “Measurement of the dielectric constant of thin films by terahertz time-domain spectroscopic ellipsometry,” Opt. Lett.36, 265–267 (2011).
[CrossRef] [PubMed]

Y. Gong, H. Dong, and Z. Chen, “Cross-polarization response of a two-contact photoconductive terahertz detector,” Terahertz Sci. Technol.4, 137–148 (2011).

J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in eutio3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett.106, 217601 (2011).
[CrossRef] [PubMed]

J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brüne, E. G. Novik, G. V. Astakhov, H. Buhmann, and L. W. Molenkamp, “Surface state charge dynamics of a high-mobility three-dimensional topological insulator,” Phys. Rev. Lett.107, 136803 (2011).
[CrossRef] [PubMed]

L. Bilbro, R. V. Aguilar, G. Logvenov, O. Pelleg, I. Bozovic, and N. P. Armitage, “Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy,” Nat. Phys.7, 298 (2011).
[CrossRef]

2010 (1)

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum.81, 023101 (2010).
[CrossRef] [PubMed]

2009 (2)

N. Matsumoto, T. Fujii, K. Kageyama, H. Takagi, T. Nagashima, and M. Hangyo, “Measurement of the soft-mode dispersion in SrTiO3 by terahertz time-domain spectroscopic ellipsometry,” Jpn. J. Appl. Phys.48, 09KC11 (2009).
[CrossRef]

H. Dong, Y. Gong, V. Paulose, and M. Hong, “Polarization state and mueller matrix measurements in terahertz-time domain spectroscopy,” Opt. Commun.282, 3671–3675 (2009).
[CrossRef]

2007 (1)

2004 (1)

C. Bernhard, J. Humlcek, and B. Keimer, “Far-infrared ellipsometry using a synchrotron light source–the dielectric response of the cuprate high Tc superconductors,” Thin Solid Films455, 143 –149 (2004).

2003 (1)

A. Pashkin, M. Kempa, H. Nemec, F. Kadlec, and P. Kuzel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum.74, 4711 (2003).
[CrossRef]

2002 (2)

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol.47, 3807 (2002).
[CrossRef] [PubMed]

R. Shimano, Y. Ino, Y. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett.81, 199–201 (2002).
[CrossRef]

2001 (2)

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett.79, 3923 (2001).
[CrossRef]

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.79, 3917–3919 (2001).
[CrossRef]

1998 (1)

D. Mittleman, R. Jacobsen, R. Neelamani, R. Baraniuk, and M. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B: Lasers Opt.67, 379–390 (1998).
[CrossRef]

1997 (1)

1993 (2)

K.-L. Barth, D. Bhme, K. Kamars, F. Keilmann, and M. Cardona, “Far-ir spectroscopic ellipsometer,” Thin Solid Films234, 314 – 317 (1993).
[CrossRef]

B. Johs, “Regression calibration method for rotating element ellipsometers,” Thin Solid Films234, 395 – 398 (1993).
[CrossRef]

1992 (1)

1990 (2)

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B7, 2006–2015 (1990).
[CrossRef]

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett.56, 1694–1696 (1990).
[CrossRef]

Aguilar, R. V.

R. V. Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Černe, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett.108, 087403 (2012).
[CrossRef]

C. M. Morris, R. V. Aguilar, A. V. Stier, and N. P. Armitage, “Polarization modulation time-domain terahertz polarimetry,” Opt. Express20, 12303–12317 (2012).
[CrossRef] [PubMed]

L. Bilbro, R. V. Aguilar, G. Logvenov, O. Pelleg, I. Bozovic, and N. P. Armitage, “Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy,” Nat. Phys.7, 298 (2011).
[CrossRef]

Armitage, N. P.

R. V. Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Černe, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett.108, 087403 (2012).
[CrossRef]

M. Neshat and N. P. Armitage, “Improved measurement of polarization state in terahertz polarization spectroscopy,” Opt. Lett.37, 1811–1813 (2012).
[CrossRef] [PubMed]

C. M. Morris, R. V. Aguilar, A. V. Stier, and N. P. Armitage, “Polarization modulation time-domain terahertz polarimetry,” Opt. Express20, 12303–12317 (2012).
[CrossRef] [PubMed]

L. Bilbro, R. V. Aguilar, G. Logvenov, O. Pelleg, I. Bozovic, and N. P. Armitage, “Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy,” Nat. Phys.7, 298 (2011).
[CrossRef]

Astakhov, G. V.

J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brüne, E. G. Novik, G. V. Astakhov, H. Buhmann, and L. W. Molenkamp, “Surface state charge dynamics of a high-mobility three-dimensional topological insulator,” Phys. Rev. Lett.107, 136803 (2011).
[CrossRef] [PubMed]

Bansal, N.

R. V. Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Černe, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett.108, 087403 (2012).
[CrossRef]

Baraniuk, R.

D. Mittleman, R. Jacobsen, R. Neelamani, R. Baraniuk, and M. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B: Lasers Opt.67, 379–390 (1998).
[CrossRef]

Barth, K.-L.

K.-L. Barth, D. Bhme, K. Kamars, F. Keilmann, and M. Cardona, “Far-ir spectroscopic ellipsometer,” Thin Solid Films234, 314 – 317 (1993).
[CrossRef]

Bernhard, C.

C. Bernhard, J. Humlcek, and B. Keimer, “Far-infrared ellipsometry using a synchrotron light source–the dielectric response of the cuprate high Tc superconductors,” Thin Solid Films455, 143 –149 (2004).

Bhme, D.

K.-L. Barth, D. Bhme, K. Kamars, F. Keilmann, and M. Cardona, “Far-ir spectroscopic ellipsometer,” Thin Solid Films234, 314 – 317 (1993).
[CrossRef]

Bilbro, L.

L. Bilbro, R. V. Aguilar, G. Logvenov, O. Pelleg, I. Bozovic, and N. P. Armitage, “Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy,” Nat. Phys.7, 298 (2011).
[CrossRef]

Bilbro, L. S.

R. V. Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Černe, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett.108, 087403 (2012).
[CrossRef]

Boosalis, A.

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum.81, 023101 (2010).
[CrossRef] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999), chap. 14.

Bozovic, I.

L. Bilbro, R. V. Aguilar, G. Logvenov, O. Pelleg, I. Bozovic, and N. P. Armitage, “Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy,” Nat. Phys.7, 298 (2011).
[CrossRef]

Braun, L.

A. Rubano, L. Braun, M. Wolf, and T. Kampfrath, “Mid-infrared time-domain ellipsometry: Application to Nb-doped SrTiO3,” Appl. Phys. Lett.101, 081103 (2012).
[CrossRef]

Bremer, J.

Brüne, C.

J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brüne, E. G. Novik, G. V. Astakhov, H. Buhmann, and L. W. Molenkamp, “Surface state charge dynamics of a high-mobility three-dimensional topological insulator,” Phys. Rev. Lett.107, 136803 (2011).
[CrossRef] [PubMed]

Buhmann, H.

J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brüne, E. G. Novik, G. V. Astakhov, H. Buhmann, and L. W. Molenkamp, “Surface state charge dynamics of a high-mobility three-dimensional topological insulator,” Phys. Rev. Lett.107, 136803 (2011).
[CrossRef] [PubMed]

Cardona, M.

J. Kircher, R. Henn, M. Cardona, P. L. Richards, and G. P. Williams, “Far-infrared ellipsometry using synchrotron radiation,” J. Opt. Soc. Am. B14, 705–712 (1997).
[CrossRef]

K.-L. Barth, D. Bhme, K. Kamars, F. Keilmann, and M. Cardona, “Far-ir spectroscopic ellipsometer,” Thin Solid Films234, 314 – 317 (1993).
[CrossRef]

Castro-Camus, E.

Cerne, J.

D. K. George, A. V. Stier, C. T. Ellis, B. D. McCombe, J. Černe, and A. G. Markelz, “Terahertz magneto-optical polarization modulation spectroscopy,” J. Opt. Soc. Am. B29, 1406 (2012).
[CrossRef]

R. V. Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Černe, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett.108, 087403 (2012).
[CrossRef]

Chen, Z.

Y. Gong, H. Dong, and Z. Chen, “Cross-polarization response of a two-contact photoconductive terahertz detector,” Terahertz Sci. Technol.4, 137–148 (2011).

Crassee, I.

J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in eutio3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett.106, 217601 (2011).
[CrossRef] [PubMed]

Dong, H.

Y. Gong, H. Dong, and Z. Chen, “Cross-polarization response of a two-contact photoconductive terahertz detector,” Terahertz Sci. Technol.4, 137–148 (2011).

H. Dong, Y. Gong, V. Paulose, and M. Hong, “Polarization state and mueller matrix measurements in terahertz-time domain spectroscopy,” Opt. Commun.282, 3671–3675 (2009).
[CrossRef]

Ellis, C. T.

Fanping, K.

Fattinger, C.

Fischer, B. M.

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol.47, 3807 (2002).
[CrossRef] [PubMed]

Foster, M. A.

C. J. Hensley, M. A. Foster, B. Shim, and A. L. Gaeta, “Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber,” in “Proceedings of Lasers and Electro-Optics,” (San Jose, Calif., 2008), p. JFG1.

Fu, L.

Fujii, T.

N. Matsumoto, T. Fujii, K. Kageyama, H. Takagi, T. Nagashima, and M. Hangyo, “Measurement of the soft-mode dispersion in SrTiO3 by terahertz time-domain spectroscopic ellipsometry,” Jpn. J. Appl. Phys.48, 09KC11 (2009).
[CrossRef]

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).

Gaeta, A. L.

C. J. Hensley, M. A. Foster, B. Shim, and A. L. Gaeta, “Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber,” in “Proceedings of Lasers and Electro-Optics,” (San Jose, Calif., 2008), p. JFG1.

George, D. K.

D. K. George, A. V. Stier, C. T. Ellis, B. D. McCombe, J. Černe, and A. G. Markelz, “Terahertz magneto-optical polarization modulation spectroscopy,” J. Opt. Soc. Am. B29, 1406 (2012).
[CrossRef]

R. V. Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Černe, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett.108, 087403 (2012).
[CrossRef]

Gong, Y.

Y. Gong, H. Dong, and Z. Chen, “Cross-polarization response of a two-contact photoconductive terahertz detector,” Terahertz Sci. Technol.4, 137–148 (2011).

H. Dong, Y. Gong, V. Paulose, and M. Hong, “Polarization state and mueller matrix measurements in terahertz-time domain spectroscopy,” Opt. Commun.282, 3671–3675 (2009).
[CrossRef]

Grischkowsky, D.

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett.56, 1694–1696 (1990).
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B7, 2006–2015 (1990).
[CrossRef]

Hancock, J. N.

J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brüne, E. G. Novik, G. V. Astakhov, H. Buhmann, and L. W. Molenkamp, “Surface state charge dynamics of a high-mobility three-dimensional topological insulator,” Phys. Rev. Lett.107, 136803 (2011).
[CrossRef] [PubMed]

Hangyo, M.

N. Matsumoto, T. Hosokura, T. Nagashima, and M. Hangyo, “Measurement of the dielectric constant of thin films by terahertz time-domain spectroscopic ellipsometry,” Opt. Lett.36, 265–267 (2011).
[CrossRef] [PubMed]

N. Matsumoto, T. Fujii, K. Kageyama, H. Takagi, T. Nagashima, and M. Hangyo, “Measurement of the soft-mode dispersion in SrTiO3 by terahertz time-domain spectroscopic ellipsometry,” Jpn. J. Appl. Phys.48, 09KC11 (2009).
[CrossRef]

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.79, 3917–3919 (2001).
[CrossRef]

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett.79, 3923 (2001).
[CrossRef]

Henn, R.

Hensley, C. J.

C. J. Hensley, M. A. Foster, B. Shim, and A. L. Gaeta, “Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber,” in “Proceedings of Lasers and Electro-Optics,” (San Jose, Calif., 2008), p. JFG1.

Herzinger, C. M.

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum.81, 023101 (2010).
[CrossRef] [PubMed]

Hofmann, T.

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum.81, 023101 (2010).
[CrossRef] [PubMed]

Hong, M.

H. Dong, Y. Gong, V. Paulose, and M. Hong, “Polarization state and mueller matrix measurements in terahertz-time domain spectroscopy,” Opt. Commun.282, 3671–3675 (2009).
[CrossRef]

Hosokura, T.

Humlcek, J.

C. Bernhard, J. Humlcek, and B. Keimer, “Far-infrared ellipsometry using a synchrotron light source–the dielectric response of the cuprate high Tc superconductors,” Thin Solid Films455, 143 –149 (2004).

Hunderi, O.

Ino, Y.

R. Shimano, Y. Ino, Y. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett.81, 199–201 (2002).
[CrossRef]

Jacobsen, R.

D. Mittleman, R. Jacobsen, R. Neelamani, R. Baraniuk, and M. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B: Lasers Opt.67, 379–390 (1998).
[CrossRef]

Jagadish, C.

Jepsen, P. U.

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol.47, 3807 (2002).
[CrossRef] [PubMed]

Johnston, M. B.

Johs, B.

B. Johs, “Regression calibration method for rotating element ellipsometers,” Thin Solid Films234, 395 – 398 (1993).
[CrossRef]

Kadlec, F.

A. Pashkin, M. Kempa, H. Nemec, F. Kadlec, and P. Kuzel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum.74, 4711 (2003).
[CrossRef]

Kageyama, K.

N. Matsumoto, T. Fujii, K. Kageyama, H. Takagi, T. Nagashima, and M. Hangyo, “Measurement of the soft-mode dispersion in SrTiO3 by terahertz time-domain spectroscopic ellipsometry,” Jpn. J. Appl. Phys.48, 09KC11 (2009).
[CrossRef]

Kamars, K.

K.-L. Barth, D. Bhme, K. Kamars, F. Keilmann, and M. Cardona, “Far-ir spectroscopic ellipsometer,” Thin Solid Films234, 314 – 317 (1993).
[CrossRef]

Kampfrath, T.

A. Rubano, L. Braun, M. Wolf, and T. Kampfrath, “Mid-infrared time-domain ellipsometry: Application to Nb-doped SrTiO3,” Appl. Phys. Lett.101, 081103 (2012).
[CrossRef]

Keiding, S.

Keilmann, F.

K.-L. Barth, D. Bhme, K. Kamars, F. Keilmann, and M. Cardona, “Far-ir spectroscopic ellipsometer,” Thin Solid Films234, 314 – 317 (1993).
[CrossRef]

Keimer, B.

C. Bernhard, J. Humlcek, and B. Keimer, “Far-infrared ellipsometry using a synchrotron light source–the dielectric response of the cuprate high Tc superconductors,” Thin Solid Films455, 143 –149 (2004).

Kempa, M.

A. Pashkin, M. Kempa, H. Nemec, F. Kadlec, and P. Kuzel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum.74, 4711 (2003).
[CrossRef]

Kircher, J.

Kolodiazhnyi, T.

J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in eutio3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett.106, 217601 (2011).
[CrossRef] [PubMed]

Kuwata-Gonokami, M.

R. Shimano, Y. Ino, Y. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett.81, 199–201 (2002).
[CrossRef]

Kuzel, P.

A. Pashkin, M. Kempa, H. Nemec, F. Kadlec, and P. Kuzel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum.74, 4711 (2003).
[CrossRef]

Kuzmenko, A. B.

J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brüne, E. G. Novik, G. V. Astakhov, H. Buhmann, and L. W. Molenkamp, “Surface state charge dynamics of a high-mobility three-dimensional topological insulator,” Phys. Rev. Lett.107, 136803 (2011).
[CrossRef] [PubMed]

Liu, W.

R. V. Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Černe, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett.108, 087403 (2012).
[CrossRef]

Lloyd-Hughes, J.

Logvenov, G.

L. Bilbro, R. V. Aguilar, G. Logvenov, O. Pelleg, I. Bozovic, and N. P. Armitage, “Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy,” Nat. Phys.7, 298 (2011).
[CrossRef]

Markelz, A. G.

R. V. Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Černe, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett.108, 087403 (2012).
[CrossRef]

D. K. George, A. V. Stier, C. T. Ellis, B. D. McCombe, J. Černe, and A. G. Markelz, “Terahertz magneto-optical polarization modulation spectroscopy,” J. Opt. Soc. Am. B29, 1406 (2012).
[CrossRef]

Matsumoto, N.

N. Matsumoto, T. Hosokura, T. Nagashima, and M. Hangyo, “Measurement of the dielectric constant of thin films by terahertz time-domain spectroscopic ellipsometry,” Opt. Lett.36, 265–267 (2011).
[CrossRef] [PubMed]

N. Matsumoto, T. Fujii, K. Kageyama, H. Takagi, T. Nagashima, and M. Hangyo, “Measurement of the soft-mode dispersion in SrTiO3 by terahertz time-domain spectroscopic ellipsometry,” Jpn. J. Appl. Phys.48, 09KC11 (2009).
[CrossRef]

McCombe, B. D.

Mittleman, D.

D. Mittleman, R. Jacobsen, R. Neelamani, R. Baraniuk, and M. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B: Lasers Opt.67, 379–390 (1998).
[CrossRef]

Molenkamp, L. W.

J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brüne, E. G. Novik, G. V. Astakhov, H. Buhmann, and L. W. Molenkamp, “Surface state charge dynamics of a high-mobility three-dimensional topological insulator,” Phys. Rev. Lett.107, 136803 (2011).
[CrossRef] [PubMed]

Morikawa, O.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett.79, 3923 (2001).
[CrossRef]

Morris, C. M.

Nagashima, T.

N. Matsumoto, T. Hosokura, T. Nagashima, and M. Hangyo, “Measurement of the dielectric constant of thin films by terahertz time-domain spectroscopic ellipsometry,” Opt. Lett.36, 265–267 (2011).
[CrossRef] [PubMed]

N. Matsumoto, T. Fujii, K. Kageyama, H. Takagi, T. Nagashima, and M. Hangyo, “Measurement of the soft-mode dispersion in SrTiO3 by terahertz time-domain spectroscopic ellipsometry,” Jpn. J. Appl. Phys.48, 09KC11 (2009).
[CrossRef]

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.79, 3917–3919 (2001).
[CrossRef]

Nashima, S.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett.79, 3923 (2001).
[CrossRef]

Neelamani, R.

D. Mittleman, R. Jacobsen, R. Neelamani, R. Baraniuk, and M. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B: Lasers Opt.67, 379–390 (1998).
[CrossRef]

Nemec, H.

A. Pashkin, M. Kempa, H. Nemec, F. Kadlec, and P. Kuzel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum.74, 4711 (2003).
[CrossRef]

Neshat, M.

Novik, E. G.

J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brüne, E. G. Novik, G. V. Astakhov, H. Buhmann, and L. W. Molenkamp, “Surface state charge dynamics of a high-mobility three-dimensional topological insulator,” Phys. Rev. Lett.107, 136803 (2011).
[CrossRef] [PubMed]

Nuss, M.

D. Mittleman, R. Jacobsen, R. Neelamani, R. Baraniuk, and M. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B: Lasers Opt.67, 379–390 (1998).
[CrossRef]

Oh, S.

R. V. Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Černe, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett.108, 087403 (2012).
[CrossRef]

Pashkin, A.

A. Pashkin, M. Kempa, H. Nemec, F. Kadlec, and P. Kuzel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum.74, 4711 (2003).
[CrossRef]

Paulose, V.

H. Dong, Y. Gong, V. Paulose, and M. Hong, “Polarization state and mueller matrix measurements in terahertz-time domain spectroscopy,” Opt. Commun.282, 3671–3675 (2009).
[CrossRef]

Pelleg, O.

L. Bilbro, R. V. Aguilar, G. Logvenov, O. Pelleg, I. Bozovic, and N. P. Armitage, “Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy,” Nat. Phys.7, 298 (2011).
[CrossRef]

Richards, P. L.

Röseler, A.

A. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, 1990).

Rubano, A.

A. Rubano, L. Braun, M. Wolf, and T. Kampfrath, “Mid-infrared time-domain ellipsometry: Application to Nb-doped SrTiO3,” Appl. Phys. Lett.101, 081103 (2012).
[CrossRef]

Schubert, M.

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum.81, 023101 (2010).
[CrossRef] [PubMed]

Shim, B.

C. J. Hensley, M. A. Foster, B. Shim, and A. L. Gaeta, “Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber,” in “Proceedings of Lasers and Electro-Optics,” (San Jose, Calif., 2008), p. JFG1.

Shimano, R.

R. Shimano, Y. Ino, Y. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett.81, 199–201 (2002).
[CrossRef]

Skauli, T.

Stier, A. V.

C. M. Morris, R. V. Aguilar, A. V. Stier, and N. P. Armitage, “Polarization modulation time-domain terahertz polarimetry,” Opt. Express20, 12303–12317 (2012).
[CrossRef] [PubMed]

D. K. George, A. V. Stier, C. T. Ellis, B. D. McCombe, J. Černe, and A. G. Markelz, “Terahertz magneto-optical polarization modulation spectroscopy,” J. Opt. Soc. Am. B29, 1406 (2012).
[CrossRef]

R. V. Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Černe, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett.108, 087403 (2012).
[CrossRef]

Svirko, Y. P.

R. Shimano, Y. Ino, Y. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett.81, 199–201 (2002).
[CrossRef]

Takagi, H.

N. Matsumoto, T. Fujii, K. Kageyama, H. Takagi, T. Nagashima, and M. Hangyo, “Measurement of the soft-mode dispersion in SrTiO3 by terahertz time-domain spectroscopic ellipsometry,” Jpn. J. Appl. Phys.48, 09KC11 (2009).
[CrossRef]

Takata, K.

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett.79, 3923 (2001).
[CrossRef]

Tan, H.H.

Tiwald, T. E.

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum.81, 023101 (2010).
[CrossRef] [PubMed]

van der Marel, D.

J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in eutio3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett.106, 217601 (2011).
[CrossRef] [PubMed]

J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brüne, E. G. Novik, G. V. Astakhov, H. Buhmann, and L. W. Molenkamp, “Surface state charge dynamics of a high-mobility three-dimensional topological insulator,” Phys. Rev. Lett.107, 136803 (2011).
[CrossRef] [PubMed]

van Exter, M.

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B7, 2006–2015 (1990).
[CrossRef]

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett.56, 1694–1696 (1990).
[CrossRef]

van Mechelen, J. L. M.

J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brüne, E. G. Novik, G. V. Astakhov, H. Buhmann, and L. W. Molenkamp, “Surface state charge dynamics of a high-mobility three-dimensional topological insulator,” Phys. Rev. Lett.107, 136803 (2011).
[CrossRef] [PubMed]

J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in eutio3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett.106, 217601 (2011).
[CrossRef] [PubMed]

Walther, M.

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol.47, 3807 (2002).
[CrossRef] [PubMed]

Watanabe, S.

Williams, G. P.

Wold, E.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999), chap. 14.

Wolf, M.

A. Rubano, L. Braun, M. Wolf, and T. Kampfrath, “Mid-infrared time-domain ellipsometry: Application to Nb-doped SrTiO3,” Appl. Phys. Lett.101, 081103 (2012).
[CrossRef]

Woollam, J. A.

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum.81, 023101 (2010).
[CrossRef] [PubMed]

Wu, L.

R. V. Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Černe, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett.108, 087403 (2012).
[CrossRef]

Yasumatsu, N.

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

D. Mittleman, R. Jacobsen, R. Neelamani, R. Baraniuk, and M. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B: Lasers Opt.67, 379–390 (1998).
[CrossRef]

Appl. Phys. Lett. (5)

S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett.79, 3923 (2001).
[CrossRef]

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.79, 3917–3919 (2001).
[CrossRef]

A. Rubano, L. Braun, M. Wolf, and T. Kampfrath, “Mid-infrared time-domain ellipsometry: Application to Nb-doped SrTiO3,” Appl. Phys. Lett.101, 081103 (2012).
[CrossRef]

R. Shimano, Y. Ino, Y. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett.81, 199–201 (2002).
[CrossRef]

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett.56, 1694–1696 (1990).
[CrossRef]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

N. Matsumoto, T. Fujii, K. Kageyama, H. Takagi, T. Nagashima, and M. Hangyo, “Measurement of the soft-mode dispersion in SrTiO3 by terahertz time-domain spectroscopic ellipsometry,” Jpn. J. Appl. Phys.48, 09KC11 (2009).
[CrossRef]

Nat. Phys. (1)

L. Bilbro, R. V. Aguilar, G. Logvenov, O. Pelleg, I. Bozovic, and N. P. Armitage, “Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy,” Nat. Phys.7, 298 (2011).
[CrossRef]

Opt. Commun. (1)

H. Dong, Y. Gong, V. Paulose, and M. Hong, “Polarization state and mueller matrix measurements in terahertz-time domain spectroscopy,” Opt. Commun.282, 3671–3675 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Med. Biol. (1)

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol.47, 3807 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

J. L. M. van Mechelen, D. van der Marel, I. Crassee, and T. Kolodiazhnyi, “Spin resonance in eutio3 probed by time-domain gigahertz ellipsometry,” Phys. Rev. Lett.106, 217601 (2011).
[CrossRef] [PubMed]

J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Brüne, E. G. Novik, G. V. Astakhov, H. Buhmann, and L. W. Molenkamp, “Surface state charge dynamics of a high-mobility three-dimensional topological insulator,” Phys. Rev. Lett.107, 136803 (2011).
[CrossRef] [PubMed]

R. V. Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Černe, A. G. Markelz, S. Oh, and N. P. Armitage, “Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett.108, 087403 (2012).
[CrossRef]

Rev. Sci. Instrum. (2)

A. Pashkin, M. Kempa, H. Nemec, F. Kadlec, and P. Kuzel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum.74, 4711 (2003).
[CrossRef]

T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woollam, and M. Schubert, “Variable-wavelength frequency-domain terahertz ellipsometry,” Rev. Sci. Instrum.81, 023101 (2010).
[CrossRef] [PubMed]

Terahertz Sci. Technol. (1)

Y. Gong, H. Dong, and Z. Chen, “Cross-polarization response of a two-contact photoconductive terahertz detector,” Terahertz Sci. Technol.4, 137–148 (2011).

Thin Solid Films (3)

B. Johs, “Regression calibration method for rotating element ellipsometers,” Thin Solid Films234, 395 – 398 (1993).
[CrossRef]

K.-L. Barth, D. Bhme, K. Kamars, F. Keilmann, and M. Cardona, “Far-ir spectroscopic ellipsometer,” Thin Solid Films234, 314 – 317 (1993).
[CrossRef]

C. Bernhard, J. Humlcek, and B. Keimer, “Far-infrared ellipsometry using a synchrotron light source–the dielectric response of the cuprate high Tc superconductors,” Thin Solid Films455, 143 –149 (2004).

Other (4)

A. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, 1990).

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).

C. J. Hensley, M. A. Foster, B. Shim, and A. L. Gaeta, “Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber,” in “Proceedings of Lasers and Electro-Optics,” (San Jose, Calif., 2008), p. JFG1.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999), chap. 14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic of the THz-TDSE setup with variable incidence angle in reflection mode that is also configurable in transmission mode (M, mirror; RR, retro-reflector; BS, optical beam splitter; OL, optical lens; TL, terahertz lens), (b) Lab setup configured in reflection mode at 45° incidence angle and (c) transmission mode.

Fig. 2
Fig. 2

Typical THz pulse detected in transmission mode when the probe beam is guided through (a) 1-m-long hollow core photonic band-gap fiber, (b) free-space optics. Insets show the corresponding pulse spectra.

Fig. 3
Fig. 3

(a) Time-domain THz pulse and (b) its corresponding spectrum in reflection mode for various incidence angles. A silver mirror was used as the reflector.

Fig. 4
Fig. 4

Schematic of the optical configuration of THz-TDSE in reflection mode.

Fig. 5
Fig. 5

Measured ellipsometric parameters (a) Ψ and (b) Δ for the high resistivity silicon substrate. Square and circle marks present the ellipsometric parameters before and after calibrating out the effect of the THz detector and the polarizer/analyzer, respectively. The incidence angle was 45°.

Fig. 6
Fig. 6

Extracted refractive index of the high resistivity silicon substrate from the uncalibrated (square) and calibrated (circle) ellipsometric parameters. Solid line shows the data from the conventional transmission THz-TDS reported in [1].

Fig. 7
Fig. 7

Fitting results of the (a) amplitude and (b) phase of the ρ-parameter shown as solid lines for ρmod and discrete marks for ρexp. The fitting was performed simultaneously for three sets of data corresponding to three different azimuthal angle of the polarizer and over the displayed frequency range. The sample was a highly doped silicon substrate, and the incidence angle was 73°.

Fig. 8
Fig. 8

(a) Extracted complex refractive index of the highly doped silicon substrate from ellipsometric parameters. Solid lines show the Drude model fit to the measured data. (b) Extracted resistivity of the highly doped silicon substrate from ellipsometry measurement. Square mark presents its DC resistivity measured via a non-contact eddy-current resistivity gauge (COTS ADE 6035).

Fig. 9
Fig. 9

Comparison between measured ellipsometric parameters (a) Ψ and (b) Δ for the highly doped Si substrate w/ and w/o oxide thin-film. Solid line shows fitted thin-film/substrate model. The incidence angle was 73°.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n 2 k 2 = sin 2 θ [ 1 + tan 2 θ ( cos 2 2 Φ sin 2 2 Φ sin 2 Δ ) ( 1 + sin 2 Φ cos Δ ) 2 ] , 2 n k = sin 2 θ tan 2 θ sin 4 Φ sin Δ ( 1 + sin 2 Φ cos Δ ) 2 ,
E r = R ( ϕ a ) J A R ( ϕ a ) J S R ( ϕ p ) J P R ( ϕ p ) E i ,
J s = [ sin ( Ψ ) exp ( j Δ ) 0 0 cos ( Ψ ) ] , J P ( A ) = [ 1 0 0 η P ( A ) exp ( j δ P ( A ) ) ] ,
I = P d ( ω ) E r ,
ρ mod ( exp ) ( Ψ , Δ , ϕ p , η P ( A ) , δ P ( A ) ) = I mod ( exp ) ( ϕ a = 0 ° ) I mod ( exp ) ( ϕ a = 90 ° ) ,
Ψ = tan 1 | ρ | , Δ = arg ( ρ ) ,
P d = [ P p P s ] = [ 1 + s 2 + 1 s 2 exp ( j δ d ) 1 + s 2 + 1 s 2 exp ( j δ d ) ] ,
s = 1 | κ | 2 1 + | κ | 2 ,
δ d = arg ( κ ) ,
κ = I exp ( ϕ a = 0 ° ) I exp ( ϕ a = 90 ° ) I exp ( ϕ a = 0 ° ) + I exp ( ϕ a = 90 ° ) .
Err = ϕ p i ω j [ | ρ mod ( ω j , ϕ p i , Ψ , Δ , ) | | ρ exp ( ω j , ϕ p i ) | ] 2 + [ arg ( ρ mod ( ω j , ϕ p i , Ψ , Δ , ) ) arg ( ρ exp ( ω j , ϕ p i ) ) ] 2 .

Metrics