Abstract

We report the experimental demonstration of a continuous-wave all-fiber optical parametric amplifier in the 1 µm band with a record bandwidth of more than 20 THz and a peak gain of almost 40 dB. This is achieved by using a photonic crystal fiber with a high figure of merit and strongly reduced longitudinal dispersion fluctuations. Due to their unique bandwidth and gain characteristics, fiber parametric amplifiers at 1 µm provide an interesting alternative to solid-state or ytterbium-doped fiber amplifiers for ultrafast optical pulse and signal processing.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, 1er ed. (Cambridge University Press, 2007).
  2. J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
    [CrossRef]
  3. M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Continuous-wave one-pump fiber optical parametric amplifier with 270 nm gain bandwidth,” in 35th European Conference on Optical Communication (ECOC), p. 1–2 (2009).
  4. T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett.18(10), 1194–1196 (2006).
    [CrossRef]
  5. P. L. Voss, R. Tang, and P. Kumar, “Measurement of the photon statistics and the noise figure of a fiber-optic parametric amplifier,” Opt. Lett.28(7), 549–551 (2003).
    [CrossRef] [PubMed]
  6. D. Bigourd, L. Lago, A. Mussot, A. Kudlinski, J.-F. Gleyze, and E. Hugonnot, “High-gain fiber, optical-parametric, chirped-pulse amplification of femtosecond pulses at 1 μm,” Opt. Lett.35(20), 3480–3482 (2010).
    [CrossRef] [PubMed]
  7. D. Bigourd, L. Lago, A. Kudlinski, E. Hugonnot, and A. Mussot, “Dynamics of fiber optical parametric chirped pulse amplifiers,” J. Opt. Soc. Am. B28(11), 2848–2854 (2011).
    [CrossRef]
  8. G. Melin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 µm,” Electron. Lett.48(4), 232–233 (2012).
    [CrossRef]
  9. M. W. Lee, T. Sylvestre, M. Delque, A. Kudlinski, A. Mussot, J.-F. Gleyze, A. Jolly, and H. Maillotte, “Demonstration of an all-fiber broadband optical parametric amplifier at 1 µm,” J. Lightwave Technol.28(15), 2173–2178 (2010).
    [CrossRef]
  10. T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, “Parametric amplification and wavelength conversion in the 1040-1090 nm band by use of a photonic crystal fiber,” Appl. Phys. Lett.94(11), 111104 (2009).
    [CrossRef]
  11. S. Randoux, N. Y. Joly, G. Mélin, A. Fleureau, L. Galkovsky, S. Lempereur, and P. Suret, “Grating-free Raman laser using highly nonlinear photonic crystal fiber,” Opt. Express15(24), 16035–16043 (2007).
    [CrossRef] [PubMed]
  12. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett.34(23), 3631–3633 (2009).
    [CrossRef] [PubMed]
  13. Y. P. Yatsenko, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Broadband wavelength conversion in a germanosilicate-core photonic crystal fiber,” Opt. Lett.34(17), 2581–2583 (2009).
    [CrossRef] [PubMed]
  14. B. Barviau, O. Vanvincq, A. Mussot, Y. Quiquempois, G. Melin, and A. Kudlinski, “Enhanced soliton self-frequency shift and CW supercontinuum generation in GeO2-doped core photonic crystal fibers,” J. Opt. Soc. Am. B28(5), 1152–1160 (2011).
    [CrossRef]
  15. G. Mélin, S. Lempereur, A. Fleureau, L. Galkovsky, S. Richard, H. Maerten, E. Burov, and P. Nouchi, “Fabrication and characterization of germanium doped highly non-linear photonic crystal fibres,” Proceedings of SPIE.6990, 699003, 699003-5 (2008).
    [CrossRef]
  16. A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett.18(1), 22–24 (2006).
    [CrossRef]
  17. M. Karlsson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B15(8), 2269–2275 (1998).
    [CrossRef]
  18. M. Farahmand and M. de Sterke, “Parametric amplification in presence of dispersion fluctuations,” Opt. Express12(1), 136–142 (2004).
    [CrossRef] [PubMed]
  19. B. P.-P. Kuo, M. Hirano, and S. Radic, “Continuous-wave, short-wavelength infrared mixer using dispersion-stabilized highly-nonlinear fiber,” Opt. Express20(16), 18422–18431 (2012).
    [CrossRef] [PubMed]
  20. B. P.-P. Kuo, J. M. Fini, L. Grüner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis,” Opt. Express20(17), 18611–18619 (2012).
    [CrossRef] [PubMed]
  21. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express15(13), 8104–8114 (2007).
    [CrossRef] [PubMed]
  22. Y. Deng, C. Yu, J. Yuan, X. Sang, and W. Li, “Raman-induced limitation of gain flatness in broadband fiber-optical parametric amplifier,” Opt. Eng.51(4), 045003 (2012).
    [CrossRef]
  23. G. Agrawal, Nonlinear Fiber Optics, 3rd ed (Academic Press, 2001).

2012

G. Melin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 µm,” Electron. Lett.48(4), 232–233 (2012).
[CrossRef]

Y. Deng, C. Yu, J. Yuan, X. Sang, and W. Li, “Raman-induced limitation of gain flatness in broadband fiber-optical parametric amplifier,” Opt. Eng.51(4), 045003 (2012).
[CrossRef]

B. P.-P. Kuo, M. Hirano, and S. Radic, “Continuous-wave, short-wavelength infrared mixer using dispersion-stabilized highly-nonlinear fiber,” Opt. Express20(16), 18422–18431 (2012).
[CrossRef] [PubMed]

B. P.-P. Kuo, J. M. Fini, L. Grüner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis,” Opt. Express20(17), 18611–18619 (2012).
[CrossRef] [PubMed]

2011

2010

2009

2008

G. Mélin, S. Lempereur, A. Fleureau, L. Galkovsky, S. Richard, H. Maerten, E. Burov, and P. Nouchi, “Fabrication and characterization of germanium doped highly non-linear photonic crystal fibres,” Proceedings of SPIE.6990, 699003, 699003-5 (2008).
[CrossRef]

2007

2006

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett.18(1), 22–24 (2006).
[CrossRef]

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett.18(10), 1194–1196 (2006).
[CrossRef]

2004

2003

2002

J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

1998

Andrekson, P. A.

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett.18(10), 1194–1196 (2006).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

Barviau, B.

Bayart, D.

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett.18(1), 22–24 (2006).
[CrossRef]

Bigot, L.

Bigourd, D.

Bouwmans, G.

Burov, E.

G. Mélin, S. Lempereur, A. Fleureau, L. Galkovsky, S. Richard, H. Maerten, E. Burov, and P. Nouchi, “Fabrication and characterization of germanium doped highly non-linear photonic crystal fibres,” Proceedings of SPIE.6990, 699003, 699003-5 (2008).
[CrossRef]

Coen, S.

de Sterke, M.

Delque, M.

Deng, Y.

Y. Deng, C. Yu, J. Yuan, X. Sang, and W. Li, “Raman-induced limitation of gain flatness in broadband fiber-optical parametric amplifier,” Opt. Eng.51(4), 045003 (2012).
[CrossRef]

Dianov, E. M.

Durecu-Legrand, A.

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett.18(1), 22–24 (2006).
[CrossRef]

Farahmand, M.

Fini, J. M.

Fleureau, A.

G. Melin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 µm,” Electron. Lett.48(4), 232–233 (2012).
[CrossRef]

G. Mélin, S. Lempereur, A. Fleureau, L. Galkovsky, S. Richard, H. Maerten, E. Burov, and P. Nouchi, “Fabrication and characterization of germanium doped highly non-linear photonic crystal fibres,” Proceedings of SPIE.6990, 699003, 699003-5 (2008).
[CrossRef]

S. Randoux, N. Y. Joly, G. Mélin, A. Fleureau, L. Galkovsky, S. Lempereur, and P. Suret, “Grating-free Raman laser using highly nonlinear photonic crystal fiber,” Opt. Express15(24), 16035–16043 (2007).
[CrossRef] [PubMed]

Galkovsky, L.

G. Melin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 µm,” Electron. Lett.48(4), 232–233 (2012).
[CrossRef]

G. Mélin, S. Lempereur, A. Fleureau, L. Galkovsky, S. Richard, H. Maerten, E. Burov, and P. Nouchi, “Fabrication and characterization of germanium doped highly non-linear photonic crystal fibres,” Proceedings of SPIE.6990, 699003, 699003-5 (2008).
[CrossRef]

S. Randoux, N. Y. Joly, G. Mélin, A. Fleureau, L. Galkovsky, S. Lempereur, and P. Suret, “Grating-free Raman laser using highly nonlinear photonic crystal fiber,” Opt. Express15(24), 16035–16043 (2007).
[CrossRef] [PubMed]

Gleyze, J. F.

T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, “Parametric amplification and wavelength conversion in the 1040-1090 nm band by use of a photonic crystal fiber,” Appl. Phys. Lett.94(11), 111104 (2009).
[CrossRef]

Gleyze, J.-F.

Grüner-Nielsen, L.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

Harvey, J. D.

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

Hirano, M.

Hsieh, A. S. Y.

Hugonnot, E.

Jie Li,

J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

Jolly, A.

M. W. Lee, T. Sylvestre, M. Delque, A. Kudlinski, A. Mussot, J.-F. Gleyze, A. Jolly, and H. Maillotte, “Demonstration of an all-fiber broadband optical parametric amplifier at 1 µm,” J. Lightwave Technol.28(15), 2173–2178 (2010).
[CrossRef]

T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, “Parametric amplification and wavelength conversion in the 1040-1090 nm band by use of a photonic crystal fiber,” Appl. Phys. Lett.94(11), 111104 (2009).
[CrossRef]

Joly, N. Y.

Karlsson, M.

Kosolapov, A. F.

Kudlinski, A.

G. Melin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 µm,” Electron. Lett.48(4), 232–233 (2012).
[CrossRef]

D. Bigourd, L. Lago, A. Kudlinski, E. Hugonnot, and A. Mussot, “Dynamics of fiber optical parametric chirped pulse amplifiers,” J. Opt. Soc. Am. B28(11), 2848–2854 (2011).
[CrossRef]

B. Barviau, O. Vanvincq, A. Mussot, Y. Quiquempois, G. Melin, and A. Kudlinski, “Enhanced soliton self-frequency shift and CW supercontinuum generation in GeO2-doped core photonic crystal fibers,” J. Opt. Soc. Am. B28(5), 1152–1160 (2011).
[CrossRef]

D. Bigourd, L. Lago, A. Mussot, A. Kudlinski, J.-F. Gleyze, and E. Hugonnot, “High-gain fiber, optical-parametric, chirped-pulse amplification of femtosecond pulses at 1 μm,” Opt. Lett.35(20), 3480–3482 (2010).
[CrossRef] [PubMed]

M. W. Lee, T. Sylvestre, M. Delque, A. Kudlinski, A. Mussot, J.-F. Gleyze, A. Jolly, and H. Maillotte, “Demonstration of an all-fiber broadband optical parametric amplifier at 1 µm,” J. Lightwave Technol.28(15), 2173–2178 (2010).
[CrossRef]

T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, “Parametric amplification and wavelength conversion in the 1040-1090 nm band by use of a photonic crystal fiber,” Appl. Phys. Lett.94(11), 111104 (2009).
[CrossRef]

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett.34(23), 3631–3633 (2009).
[CrossRef] [PubMed]

Kumar, P.

Kuo, B. P.-P.

Labat, D.

G. Melin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 µm,” Electron. Lett.48(4), 232–233 (2012).
[CrossRef]

Lago, L.

Lantz, E.

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett.18(1), 22–24 (2006).
[CrossRef]

Le Rouge, A.

Lee, M. W.

Lempereur, S.

G. Melin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 µm,” Electron. Lett.48(4), 232–233 (2012).
[CrossRef]

G. Mélin, S. Lempereur, A. Fleureau, L. Galkovsky, S. Richard, H. Maerten, E. Burov, and P. Nouchi, “Fabrication and characterization of germanium doped highly non-linear photonic crystal fibres,” Proceedings of SPIE.6990, 699003, 699003-5 (2008).
[CrossRef]

S. Randoux, N. Y. Joly, G. Mélin, A. Fleureau, L. Galkovsky, S. Lempereur, and P. Suret, “Grating-free Raman laser using highly nonlinear photonic crystal fiber,” Opt. Express15(24), 16035–16043 (2007).
[CrossRef] [PubMed]

Leonhardt, R.

Levchenko, A. E.

Li, W.

Y. Deng, C. Yu, J. Yuan, X. Sang, and W. Li, “Raman-induced limitation of gain flatness in broadband fiber-optical parametric amplifier,” Opt. Eng.51(4), 045003 (2012).
[CrossRef]

Maerten, H.

G. Mélin, S. Lempereur, A. Fleureau, L. Galkovsky, S. Richard, H. Maerten, E. Burov, and P. Nouchi, “Fabrication and characterization of germanium doped highly non-linear photonic crystal fibres,” Proceedings of SPIE.6990, 699003, 699003-5 (2008).
[CrossRef]

Maillotte, H.

M. W. Lee, T. Sylvestre, M. Delque, A. Kudlinski, A. Mussot, J.-F. Gleyze, A. Jolly, and H. Maillotte, “Demonstration of an all-fiber broadband optical parametric amplifier at 1 µm,” J. Lightwave Technol.28(15), 2173–2178 (2010).
[CrossRef]

T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, “Parametric amplification and wavelength conversion in the 1040-1090 nm band by use of a photonic crystal fiber,” Appl. Phys. Lett.94(11), 111104 (2009).
[CrossRef]

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett.18(1), 22–24 (2006).
[CrossRef]

Melin, G.

G. Melin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 µm,” Electron. Lett.48(4), 232–233 (2012).
[CrossRef]

B. Barviau, O. Vanvincq, A. Mussot, Y. Quiquempois, G. Melin, and A. Kudlinski, “Enhanced soliton self-frequency shift and CW supercontinuum generation in GeO2-doped core photonic crystal fibers,” J. Opt. Soc. Am. B28(5), 1152–1160 (2011).
[CrossRef]

Mélin, G.

Murdoch, S. G.

Mussot, A.

G. Melin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 µm,” Electron. Lett.48(4), 232–233 (2012).
[CrossRef]

D. Bigourd, L. Lago, A. Kudlinski, E. Hugonnot, and A. Mussot, “Dynamics of fiber optical parametric chirped pulse amplifiers,” J. Opt. Soc. Am. B28(11), 2848–2854 (2011).
[CrossRef]

B. Barviau, O. Vanvincq, A. Mussot, Y. Quiquempois, G. Melin, and A. Kudlinski, “Enhanced soliton self-frequency shift and CW supercontinuum generation in GeO2-doped core photonic crystal fibers,” J. Opt. Soc. Am. B28(5), 1152–1160 (2011).
[CrossRef]

M. W. Lee, T. Sylvestre, M. Delque, A. Kudlinski, A. Mussot, J.-F. Gleyze, A. Jolly, and H. Maillotte, “Demonstration of an all-fiber broadband optical parametric amplifier at 1 µm,” J. Lightwave Technol.28(15), 2173–2178 (2010).
[CrossRef]

D. Bigourd, L. Lago, A. Mussot, A. Kudlinski, J.-F. Gleyze, and E. Hugonnot, “High-gain fiber, optical-parametric, chirped-pulse amplification of femtosecond pulses at 1 μm,” Opt. Lett.35(20), 3480–3482 (2010).
[CrossRef] [PubMed]

T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, “Parametric amplification and wavelength conversion in the 1040-1090 nm band by use of a photonic crystal fiber,” Appl. Phys. Lett.94(11), 111104 (2009).
[CrossRef]

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett.34(23), 3631–3633 (2009).
[CrossRef] [PubMed]

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett.18(1), 22–24 (2006).
[CrossRef]

Nouchi, P.

G. Mélin, S. Lempereur, A. Fleureau, L. Galkovsky, S. Richard, H. Maerten, E. Burov, and P. Nouchi, “Fabrication and characterization of germanium doped highly non-linear photonic crystal fibres,” Proceedings of SPIE.6990, 699003, 699003-5 (2008).
[CrossRef]

Olsson, B.-E.

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett.18(10), 1194–1196 (2006).
[CrossRef]

Quiquempois, Y.

Radic, S.

Randoux, S.

Richard, S.

G. Mélin, S. Lempereur, A. Fleureau, L. Galkovsky, S. Richard, H. Maerten, E. Burov, and P. Nouchi, “Fabrication and characterization of germanium doped highly non-linear photonic crystal fibres,” Proceedings of SPIE.6990, 699003, 699003-5 (2008).
[CrossRef]

Sang, X.

Y. Deng, C. Yu, J. Yuan, X. Sang, and W. Li, “Raman-induced limitation of gain flatness in broadband fiber-optical parametric amplifier,” Opt. Eng.51(4), 045003 (2012).
[CrossRef]

Semjonov, S. L.

Simonneau, C.

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett.18(1), 22–24 (2006).
[CrossRef]

Suret, P.

Sylvestre, T.

M. W. Lee, T. Sylvestre, M. Delque, A. Kudlinski, A. Mussot, J.-F. Gleyze, A. Jolly, and H. Maillotte, “Demonstration of an all-fiber broadband optical parametric amplifier at 1 µm,” J. Lightwave Technol.28(15), 2173–2178 (2010).
[CrossRef]

T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, “Parametric amplification and wavelength conversion in the 1040-1090 nm band by use of a photonic crystal fiber,” Appl. Phys. Lett.94(11), 111104 (2009).
[CrossRef]

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett.18(1), 22–24 (2006).
[CrossRef]

Tang, R.

Torounidis, T.

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett.18(10), 1194–1196 (2006).
[CrossRef]

Vanholsbeeck, F.

Vanvincq, O.

Voss, P. L.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

Wong, G. K. L.

Yatsenko, Y. P.

Yu, C.

Y. Deng, C. Yu, J. Yuan, X. Sang, and W. Li, “Raman-induced limitation of gain flatness in broadband fiber-optical parametric amplifier,” Opt. Eng.51(4), 045003 (2012).
[CrossRef]

Yuan, J.

Y. Deng, C. Yu, J. Yuan, X. Sang, and W. Li, “Raman-induced limitation of gain flatness in broadband fiber-optical parametric amplifier,” Opt. Eng.51(4), 045003 (2012).
[CrossRef]

Appl. Phys. Lett.

T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, “Parametric amplification and wavelength conversion in the 1040-1090 nm band by use of a photonic crystal fiber,” Appl. Phys. Lett.94(11), 111104 (2009).
[CrossRef]

Electron. Lett.

G. Melin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 µm,” Electron. Lett.48(4), 232–233 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Hansryd, P. A. Andrekson, M. Westlund, Jie Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett.18(10), 1194–1196 (2006).
[CrossRef]

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett.18(1), 22–24 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Eng.

Y. Deng, C. Yu, J. Yuan, X. Sang, and W. Li, “Raman-induced limitation of gain flatness in broadband fiber-optical parametric amplifier,” Opt. Eng.51(4), 045003 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Proceedings of SPIE.

G. Mélin, S. Lempereur, A. Fleureau, L. Galkovsky, S. Richard, H. Maerten, E. Burov, and P. Nouchi, “Fabrication and characterization of germanium doped highly non-linear photonic crystal fibres,” Proceedings of SPIE.6990, 699003, 699003-5 (2008).
[CrossRef]

Other

G. Agrawal, Nonlinear Fiber Optics, 3rd ed (Academic Press, 2001).

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, 1er ed. (Cambridge University Press, 2007).

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Continuous-wave one-pump fiber optical parametric amplifier with 270 nm gain bandwidth,” in 35th European Conference on Optical Communication (ECOC), p. 1–2 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Calculated GVD curve of the neutral axis used in experiments. Inset: SEM image of the PCF. (b) Measured attenuation spectrum.

Fig. 2
Fig. 2

Experimental setup. TL-P,S: tunable diode lasers, PM: Phase modulator, PRBS: pseudo-random bit sequence, YDFA: Ytterbium doped fiber amplifier, PC: polarization controller.

Fig. 3
Fig. 3

Parametric fluorescence spectra recorded for increasing pump wavelengths.

Fig. 4
Fig. 4

(a) Output spectra corresponding to pump on (purple line, λP = 1054.7 nm) and pump off (blue line) when a monochromatic signal is launched into the FOPA. (b) Circles: on/off gain spectra corresponding to λP = 1054.7 nm (purple) and λP = 1054.5 nm (orange). Dotted lines represent corresponding parametric fluorescence spectra recorded without any signal. The signal input power was fixed at 740 nW in order to work in the linear regime of the amplifier.

Fig. 5
Fig. 5

On/off gain spectra calculated from numerical simulations, without dispersion fluctuation (black dashed line), blue band with reduced ZDW fluctuations and red band with standard ones with an interval of confidence of 68% of the events. Experimental results with λP = 1054.5 nm are represented in orange line. Parameters are similar to experimental ones. λP = 1054.5 nm, β2P) average = −1 × 10−29 s2/m, β3P) = 0.56 × 10−40 s3/m, β4P) = −1.5 × 10−55 s4/m, γ = 35 W−1.km−1, L = 220 m, PP = 670 mW and α = 3.9 dB/km.

Metrics