Abstract

Electrically driven Er3+ doped Si slot waveguides emitting at 1530 nm are demonstrated. Two different Er3+ doped active layers were fabricated in the slot region: a pure SiO2 and a Si-rich oxide. Pulsed polarization driving of the waveguides was used to characterize the time response of the electroluminescence (EL) and of the signal probe transmission in 1 mm long waveguides. Injected carrier absorption losses modulate the EL signal and, since the carrier lifetime is much smaller than that of Er3+ ions, a sharp EL peak was observed when the polarization was switched off. A time-resolved electrical pump & probe measurement in combination with lock-in amplifier techniques allowed to quantify the injected carrier absorption losses. We found an extinction ratio of 6 dB, passive propagation losses of about 4 dB/mm, and a spectral bandwidth > 25 nm at an effective d.c. power consumption of 120 μW. All these performances suggest the usage of these devices as electro-optical modulators.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
    [CrossRef]
  2. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
    [CrossRef]
  3. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol.23(12), 4222–4238 (2005).
    [CrossRef]
  4. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev.5(3), 368–403 (2011).
    [CrossRef]
  5. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless Silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009).
    [CrossRef] [PubMed]
  6. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  7. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining Light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  8. M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Salvio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006).
  9. K. Preston and M. Lipson, “Slot waveguides with polycrystalline silicon for electrical injection,” Opt. Express17(3), 1527–1534 (2009).
    [CrossRef] [PubMed]
  10. H. Jayatilleka, A. Nasrollahy-Shiraz, and A. J. Kenyon, “Electrically pumped silicon waveguide light sources,” Opt. Express19(24), 24569–24576 (2011).
    [CrossRef] [PubMed]
  11. J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published).
    [PubMed]
  12. D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gourbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett.92, 051101 (2008).
  13. T. Creazzo, B. Redding, E. Marchena, S. Shi, and D. W. Prather, “Free-carrier absorption modulation in silicon nanocrystal slot waveguides,” Opt. Lett.35(21), 3691–3693 (2010).
    [CrossRef] [PubMed]
  14. G. M. Miller, R. M. Briggs, and H. A. Atwater, “Achieving optical gain in waveguide-confined nanocluster-sensitized erbium by pulsed excitation,” J. Appl. Phys.108, 063109 (2010).
  15. R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express15(26), 17967–17972 (2007).
    [CrossRef] [PubMed]
  16. D. J. DiMaria and D. W. Dong, “High current injection into SiO2 from Si rich SiO2 films and experimental applications,” J. Appl. Phys.51(5), 2722–2735 (1980).
    [CrossRef]
  17. J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).
  18. F Iacona, D Pacifici, A Irrera, M Miritello, G Franzò, and F Priolo, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81, 3242 (2002).
  19. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express18(4), 3582–3591 (2010).
    [CrossRef] [PubMed]
  20. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
    [CrossRef]
  21. S. Y. Seo, J. Lee, H. Jung, E. S. Shin, B. Kang, and S. Bae, “The thermo-optic effect of Si nanocrystals in silicon-rich silicon oxide thin films,” Appl. Phys. Lett.85, 2526 (2004).
  22. R. C. Zaccuri, G. Coppola, and M. Iodice, “Thermo-electro-optical analysis of an integrated waveguide-vanishing-based optical modulator,” J. Opt. A: Pure Appl. Opt.8(7), S567–S573 (2006).
    [CrossRef]
  23. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  24. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express17(17), 15248–15256 (2009).
    [CrossRef] [PubMed]
  25. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express13(8), 3129–3135 (2005).
    [CrossRef] [PubMed]
  26. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
    [CrossRef]
  27. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  28. A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys.106, 033104 (2009).

2012 (1)

J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).

2011 (2)

H. Jayatilleka, A. Nasrollahy-Shiraz, and A. J. Kenyon, “Electrically pumped silicon waveguide light sources,” Opt. Express19(24), 24569–24576 (2011).
[CrossRef] [PubMed]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev.5(3), 368–403 (2011).
[CrossRef]

2010 (4)

T. Creazzo, B. Redding, E. Marchena, S. Shi, and D. W. Prather, “Free-carrier absorption modulation in silicon nanocrystal slot waveguides,” Opt. Lett.35(21), 3691–3693 (2010).
[CrossRef] [PubMed]

G. M. Miller, R. M. Briggs, and H. A. Atwater, “Achieving optical gain in waveguide-confined nanocluster-sensitized erbium by pulsed excitation,” J. Appl. Phys.108, 063109 (2010).

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express18(4), 3582–3591 (2010).
[CrossRef] [PubMed]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

2009 (4)

2008 (2)

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gourbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett.92, 051101 (2008).

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

2007 (2)

2006 (4)

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Salvio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006).

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
[CrossRef]

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

R. C. Zaccuri, G. Coppola, and M. Iodice, “Thermo-electro-optical analysis of an integrated waveguide-vanishing-based optical modulator,” J. Opt. A: Pure Appl. Opt.8(7), S567–S573 (2006).
[CrossRef]

2005 (3)

2004 (3)

V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining Light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

S. Y. Seo, J. Lee, H. Jung, E. S. Shin, B. Kang, and S. Bae, “The thermo-optic effect of Si nanocrystals in silicon-rich silicon oxide thin films,” Appl. Phys. Lett.85, 2526 (2004).

2002 (1)

F Iacona, D Pacifici, A Irrera, M Miritello, G Franzò, and F Priolo, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81, 3242 (2002).

1980 (1)

D. J. DiMaria and D. W. Dong, “High current injection into SiO2 from Si rich SiO2 films and experimental applications,” J. Appl. Phys.51(5), 2722–2735 (1980).
[CrossRef]

Fedeli, J. M.

J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).

Almeida, V. R.

Andreani, L. C.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Salvio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006).

Anopchenko, A.

J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys.106, 033104 (2009).

J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published).
[PubMed]

Atwater, H. A.

G. M. Miller, R. M. Briggs, and H. A. Atwater, “Achieving optical gain in waveguide-confined nanocluster-sensitized erbium by pulsed excitation,” J. Appl. Phys.108, 063109 (2010).

Bae, S.

S. Y. Seo, J. Lee, H. Jung, E. S. Shin, B. Kang, and S. Bae, “The thermo-optic effect of Si nanocrystals in silicon-rich silicon oxide thin films,” Appl. Phys. Lett.85, 2526 (2004).

Barrios, C. A.

Beals, M.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Bellutti, P.

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys.106, 033104 (2009).

Berencén, Y.

J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).

J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published).
[PubMed]

Bernardis, S.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Bradley, J. D. B.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev.5(3), 368–403 (2011).
[CrossRef]

Briggs, R. M.

G. M. Miller, R. M. Briggs, and H. A. Atwater, “Achieving optical gain in waveguide-confined nanocluster-sensitized erbium by pulsed excitation,” J. Appl. Phys.108, 063109 (2010).

Canino, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Salvio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006).

Cardenas, J.

Chen, L.

Cheng, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Colonna, J. P.

J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).

J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published).
[PubMed]

Coppola, G.

R. C. Zaccuri, G. Coppola, and M. Iodice, “Thermo-electro-optical analysis of an integrated waveguide-vanishing-based optical modulator,” J. Opt. A: Pure Appl. Opt.8(7), S567–S573 (2006).
[CrossRef]

Creazzo, T.

Daldosso, N.

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gourbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett.92, 051101 (2008).

DiMaria, D. J.

D. J. DiMaria and D. W. Dong, “High current injection into SiO2 from Si rich SiO2 films and experimental applications,” J. Appl. Phys.51(5), 2722–2735 (1980).
[CrossRef]

Dong, D. W.

D. J. DiMaria and D. W. Dong, “High current injection into SiO2 from Si rich SiO2 films and experimental applications,” J. Appl. Phys.51(5), 2722–2735 (1980).
[CrossRef]

Dong, P.

Fathpour, S.

Fedeli, J. M.

J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published).
[PubMed]

Feng, N. N.

Ferrarese Lupi, F.

J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).

J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published).
[PubMed]

Foster, M. A.

Franck, T.

Franzò, G

F Iacona, D Pacifici, A Irrera, M Miritello, G Franzò, and F Priolo, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81, 3242 (2002).

Gaeta, A. L.

Galli, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Salvio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006).

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Garrido, B.

J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).

J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published).
[PubMed]

Gerace, D.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Salvio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006).

Gourbilleau, F.

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gourbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett.92, 051101 (2008).

Green, W. M.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Hodge, D.

Hong, C. Y.

Iacona, F

F Iacona, D Pacifici, A Irrera, M Miritello, G Franzò, and F Priolo, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81, 3242 (2002).

Iodice, M.

R. C. Zaccuri, G. Coppola, and M. Iodice, “Thermo-electro-optical analysis of an integrated waveguide-vanishing-based optical modulator,” J. Opt. A: Pure Appl. Opt.8(7), S567–S573 (2006).
[CrossRef]

Irrera, A

F Iacona, D Pacifici, A Irrera, M Miritello, G Franzò, and F Priolo, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81, 3242 (2002).

Irrera, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Salvio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006).

Jalali, B.

Jambois, O.

J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).

J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published).
[PubMed]

Jayatilleka, H.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Jung, H.

S. Y. Seo, J. Lee, H. Jung, E. S. Shin, B. Kang, and S. Bae, “The thermo-optic effect of Si nanocrystals in silicon-rich silicon oxide thin films,” Appl. Phys. Lett.85, 2526 (2004).

Kang, B.

S. Y. Seo, J. Lee, H. Jung, E. S. Shin, B. Kang, and S. Bae, “The thermo-optic effect of Si nanocrystals in silicon-rich silicon oxide thin films,” Appl. Phys. Lett.85, 2526 (2004).

Keil, U. D.

Kenyon, A. J.

Kimerling, L.

Kimerling, L. C.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Lee, J.

S. Y. Seo, J. Lee, H. Jung, E. S. Shin, B. Kang, and S. Bae, “The thermo-optic effect of Si nanocrystals in silicon-rich silicon oxide thin films,” Appl. Phys. Lett.85, 2526 (2004).

Levy, J. S.

Liao, L.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express13(8), 3129–3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Lipson, M.

Liscidini, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Salvio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006).

Liu, A.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express13(8), 3129–3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liu, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Lo Salvio, R.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Salvio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006).

Manipatruni, S.

Marchena, E.

Marconi, A.

J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys.106, 033104 (2009).

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Michel, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express15(26), 17967–17972 (2007).
[CrossRef] [PubMed]

Miller, G. M.

G. M. Miller, R. M. Briggs, and H. A. Atwater, “Achieving optical gain in waveguide-confined nanocluster-sensitized erbium by pulsed excitation,” J. Appl. Phys.108, 063109 (2010).

Miritello, M

F Iacona, D Pacifici, A Irrera, M Miritello, G Franzò, and F Priolo, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81, 3242 (2002).

Miritello, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Salvio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006).

Morse, M.

Moser, E.

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys.106, 033104 (2009).

Nasrollahy-Shiraz, A.

Navarro-Urrios, D.

J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gourbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett.92, 051101 (2008).

J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published).
[PubMed]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Pacifici, D

F Iacona, D Pacifici, A Irrera, M Miritello, G Franzò, and F Priolo, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81, 3242 (2002).

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Patrini, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Salvio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006).

Pavesi, L.

J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys.106, 033104 (2009).

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gourbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett.92, 051101 (2008).

J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published).
[PubMed]

Pitanti, A.

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gourbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett.92, 051101 (2008).

Poitras, C. B.

Politi, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Salvio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006).

Pollnau, M.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev.5(3), 368–403 (2011).
[CrossRef]

Pomerene, A.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Prather, D. W.

Preston, K.

Prezioso, S.

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys.106, 033104 (2009).

Priolo, F

F Iacona, D Pacifici, A Irrera, M Miritello, G Franzò, and F Priolo, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81, 3242 (2002).

Priolo, F.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Salvio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006).

Prtljaga, N.

J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).

J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published).
[PubMed]

Pucker, G.

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys.106, 033104 (2009).

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gourbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett.92, 051101 (2008).

Ramírez, J. M.

J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).

J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published).
[PubMed]

Redding, B.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Rivallin, P.

J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published).
[PubMed]

Rizk, R.

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gourbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett.92, 051101 (2008).

Robinson, J. T.

Rooks, M. J.

Rubin, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express13(8), 3129–3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Salem, R.

Samara-Rubio, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express13(8), 3129–3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Sekaric, L.

Seo, S. Y.

S. Y. Seo, J. Lee, H. Jung, E. S. Shin, B. Kang, and S. Bae, “The thermo-optic effect of Si nanocrystals in silicon-rich silicon oxide thin films,” Appl. Phys. Lett.85, 2526 (2004).

Shi, S.

Shin, E. S.

S. Y. Seo, J. Lee, H. Jung, E. S. Shin, B. Kang, and S. Bae, “The thermo-optic effect of Si nanocrystals in silicon-rich silicon oxide thin films,” Appl. Phys. Lett.85, 2526 (2004).

Soref, R.

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

Sun, R.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express15(26), 17967–17972 (2007).
[CrossRef] [PubMed]

Tengattini, A.

J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).

J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published).
[PubMed]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Turner-Foster, A. C.

Vlasov, Y. A.

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Wang, M.

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys.106, 033104 (2009).

Xu, Q. F.

Zaccuri, R. C.

R. C. Zaccuri, G. Coppola, and M. Iodice, “Thermo-electro-optical analysis of an integrated waveguide-vanishing-based optical modulator,” J. Opt. A: Pure Appl. Opt.8(7), S567–S573 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Salvio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006).

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gourbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett.92, 051101 (2008).

S. Y. Seo, J. Lee, H. Jung, E. S. Shin, B. Kang, and S. Bae, “The thermo-optic effect of Si nanocrystals in silicon-rich silicon oxide thin films,” Appl. Phys. Lett.85, 2526 (2004).

F Iacona, D Pacifici, A Irrera, M Miritello, G Franzò, and F Priolo, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81, 3242 (2002).

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

J. Appl. Phys. (3)

G. M. Miller, R. M. Briggs, and H. A. Atwater, “Achieving optical gain in waveguide-confined nanocluster-sensitized erbium by pulsed excitation,” J. Appl. Phys.108, 063109 (2010).

D. J. DiMaria and D. W. Dong, “High current injection into SiO2 from Si rich SiO2 films and experimental applications,” J. Appl. Phys.51(5), 2722–2735 (1980).
[CrossRef]

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys.106, 033104 (2009).

J. Lightwave Technol. (2)

J. Opt. A: Pure Appl. Opt. (1)

R. C. Zaccuri, G. Coppola, and M. Iodice, “Thermo-electro-optical analysis of an integrated waveguide-vanishing-based optical modulator,” J. Opt. A: Pure Appl. Opt.8(7), S567–S573 (2006).
[CrossRef]

Laser Photon. Rev. (1)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev.5(3), 368–403 (2011).
[CrossRef]

Nanotechnology (2)

J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published).
[PubMed]

J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).

Nat. Photonics (2)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Nature (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express (8)

K. Preston and M. Lipson, “Slot waveguides with polycrystalline silicon for electrical injection,” Opt. Express17(3), 1527–1534 (2009).
[CrossRef] [PubMed]

H. Jayatilleka, A. Nasrollahy-Shiraz, and A. J. Kenyon, “Electrically pumped silicon waveguide light sources,” Opt. Express19(24), 24569–24576 (2011).
[CrossRef] [PubMed]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless Silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express15(26), 17967–17972 (2007).
[CrossRef] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express18(4), 3582–3591 (2010).
[CrossRef] [PubMed]

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express17(17), 15248–15256 (2009).
[CrossRef] [PubMed]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express13(8), 3129–3135 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Slot waveguide cross-section (top panel) and top schematic view (bottom panel) of the integrated system with the experimental configuration used for the measurements. A coordinate system (crossed arrows) is shown to facilitate a spatial view of the waveguides.

Fig. 2
Fig. 2

(a) J(V) characteristics of the waveguides under accumulation. (b) EL spectra of both layers obtained under a square wave pulse (Vpp = −44 V). (c and d) Time-resolved EL measurements at 1528 nm of the Er:SiO2 (c) and the Er:Si-ncs (d) slot waveguides as a function of the voltage polarization in the top electrode.

Fig. 3
Fig. 3

(a) Intensity of the DC and peak EL value as a function of the injected current density for the two waveguides studied. (b) Decay (half filled squares) and rise (circles) times as a function of the injected current. The inset shows an example of a decay fit of the experimental data. This figure shows a representative measurement in an Er:SiO2 waveguide.

Fig. 4
Fig. 4

Electrical pump & probe measurements of an Er:SiO2 waveguide at 1528 nm (top red line) under square wave electrical bias. Each panel refers to different square wave amplitude. The EL has been also measured for each voltage polarization (black line at the bottom).

Fig. 5
Fig. 5

Transmittance at 1528 nm in the Er:SiO2 waveguide for a square wave bias of −46 V. This figure was obtained by subtracting the EL signal to the pump & probe measurements of the panel in the right-bottom side of the Fig. 4. The green dashed line marks the average transmittance when the voltage source is on.

Fig. 6
Fig. 6

(a) Time-resolved probe intensity transmittance at 1528 nm and (b) spectral transmittance for different voltages (given in the legend) and for the Er:SiO2 waveguide. (c) Modulation depth as a function of the applied voltage for the two waveguides. The green dashed line indicates the threshold where heating effects start to be sizable.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ EL ( % )= E L PEAK E L DC E L DC 100
E L off (t)=E L peak e t τ decay
E L on (t)=E L DC { 1 e t τ rise }
Transmittance= 10 L log( I p&p I EL I probe )
η(%)=[1exp( Δα(V)L )]100

Metrics