Abstract

Two fiber Raman probes are presented, one based on an optically-poled double-clad fiber and the second based on an optically-poled double-clad fiber coupler respectively. Optical poling of the core of the fiber allows for the generation of enough 532nm light to perform Raman spectroscopy of a sample of dimethyl sulfoxide (DMSO), when illuminating the waveguide with 1064nm laser light. The Raman signal is collected in the inner cladding, from which it is retrieved with either a bulk dichroic mirror or a double-clad fiber coupler. The coupler allows for a substantial reduction of the fiber spectral background signal conveyed to the spectrometer.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. McCreery, M. Fleischmann, and P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem.55 (1), 146–148 (1983).
    [CrossRef]
  2. I. Lewis and P. Griffiths, “Raman spectrometry with fiber-optic sampling,” Appl. Spectrosc.50, 12A–30A (1996).
    [CrossRef]
  3. T. Cooney, H. Skinner, and S. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part I: Model for liquids and transparent solids,” Appl. Spectrosc.50, 836–848 (1996).
    [CrossRef]
  4. T. Cooney, H. Skinner, and S. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part II: Tests of single-fiber, lensed, and flat- and bevel-tip multi-fiber probes,” Appl. Spectrosc.50, 849–860 (1996).
    [CrossRef]
  5. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8, 121–147 (2003).
    [CrossRef] [PubMed]
  6. M.J. Pelletier, “Fiber optic probe with integral optical filtering,” USA Patent no. 5862273 (1999).
  7. A. C. Brunetti, L. Scolari, T. Lund-Hansen, J. Weirich, and K. Rottwitt, “All-in-fiber Rayleigh-rejection filter for Raman spectroscopy,” Electron. Lett.48(5), 275–276 (2012).
    [CrossRef]
  8. B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett.37(16), 3384–3386 (2012).
    [CrossRef]
  9. V. Pruneri, G. Bonfrate, P. G. Kazansky, D. J Richardson, N. G. Broderick, J. P. de Sandro, C. Simonneau, P. Vidakovic, and J. A. Levenson, “Greater than 20%-efficient frequency-doubling of 1532-nm nanosecond pulses in quasi-phase matched germanosilicate optical fibers,” Opt. Lett.24, 208–210 (1999).
    [CrossRef]
  10. A. Canagasabey, C. Corbari, Z. Zhaowei, P. G. Kazansky, and M. Ibsen, “Broadly tunable second-harmonic generation in periodically poled silica fibers,” Opt. Lett.32, 1863–1865 (2007).
    [CrossRef] [PubMed]
  11. V. Pruneri and P. G. Kazansky, “Frequency doubling of picosecond pulses in periodically-poled D-shaped silica fibre,” Electron. Lett.33, 318–319 (1997).
    [CrossRef]
  12. A. Canagasabey, C. Corbari, A.V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Yashkov, A. Kosolapov, E. M. Dianov, M. Ibsen, and P.G. Kazansky, “High-average-power second-harmonic generation from periodically poled silica fibers,” Opt. Lett.34, 2483–2485 (2009).
    [CrossRef] [PubMed]
  13. U. Österberg and W. Margulis, “Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber,” Opt. Lett.11, 516–518 (1986).
    [CrossRef] [PubMed]
  14. R. Kashyap, “Poling of glasses and optical fibers,” in Fiber Bragg Gratings, 2nd ed., (Academic press, 2010), pp. 527–596.
    [CrossRef]
  15. W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature378, 699–701 (1995).
    [CrossRef]
  16. R.H. Stolen and H.W.K. Tom, “Self-organized phase-matched harmonic generation in optical fibers,” Opt. Lett.12(8), 585–587 (1987).
    [CrossRef] [PubMed]
  17. M.L. Myrick and S.M. Angel, “Elimination of background in fiber-optic Raman measurements,” Appl. Spectrosc.44(4), 565–570 (1990).
    [CrossRef]
  18. J. Udovich, N. Kirkpatrick, A. Kano, A. Tanbakuchi, U. Utzinger, and A. Gmitro, “Spectral background and transmission characteristics of fiber optic imaging bundles,” Appl. Opt.47, 4560–4568 (2008).
    [CrossRef] [PubMed]
  19. S. Konorov, C. Addison, H. Schulze, R. Turner, and M. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett.31, 1911–1913 (2006).
    [CrossRef] [PubMed]
  20. M. Buric, K. Chen, J. Falk, and S. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Opt.47, 4255–4261 (2008).
    [CrossRef] [PubMed]
  21. P. Ghenuche, S. Rammler, N. Joly, M. Scharrer, M. Frosz, J. Wenger, P.St.J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett.37, 4371–4373 (2012).
    [CrossRef] [PubMed]
  22. H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett.89 (20), 204101 (2006).
    [CrossRef]
  23. D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, “Double-clad fiber for endoscopy,” Opt. Lett.29 (20), 2408–2410 (2004).
    [CrossRef] [PubMed]
  24. S. Brustlein, P. Berto, R. Hostein, P. Ferrand, C. Billaudeau, D. Marguet, A. Muir, J. Knight, and H. Rigneault, “Double-clad hollow core photonic crystal fiber for coherent Raman endoscope,” Opt. Express19 (13), 12562–12568 (2011).
    [CrossRef] [PubMed]
  25. M. Myaing, J. Ye, T. Norris, T. Thomas, J. Baker, W. Wadsworth, G. Bouwmans, J. Knight, and P. St. J. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett.28, 1224–1226 (2003).
    [CrossRef] [PubMed]
  26. L. Fu and M. Gu, “Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging,” Opt. Lett.31(10), 1471–1473 (2006).
    [CrossRef] [PubMed]
  27. H. Bao, S. Y. Ryu, B. H. Lee, W. Tao, and M. Gu, “Nonlinear endomicroscopy using a double-clad fiber coupler,” Opt. Lett.35, 995–997 (2010).
    [CrossRef] [PubMed]
  28. S. Lemire-Renaud, M. Rivard, M. Strupler, D. Morneau, F. Verpillat, X. Daxhelet, N. Godbout, and C. Boudoux, “Double-clad fiber coupler for endoscopy,” Opt. Express18, 9755–9764 (2010).
    [CrossRef] [PubMed]
  29. L. Wang, H. Y. Choi, Y. Jung, B. H. Lee, and K.-T. Kim, “Optical probe based on double-clad optical fiber for fluorescence spectroscopy,” Opt. Express15, 17681–17689 (2007).
    [CrossRef] [PubMed]
  30. S. Y. Ryu, H. Y. Choi, M. J. Ju, J. H. Na, W. J. Choi, and B. H. Lee, “The development of double clad fiber and double clad fiber coupler for fiber based biomedical imaging systems,” J. Opt. Soc. Korea13, 310–315 (2009).
    [CrossRef]
  31. F. Oullette, K. O. Hill, and D. C. Johnson, “Enhancement of second-harmonic generation in optical fibers by a hydrogen and heat treatment,” Appl. Phys. Lett.54(12), 1086–1088 (1989).
    [CrossRef]
  32. M. Fokine and W. Margulis, “Photoinduced refractive index changes in frequency doubling fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, T. Erdogan, E. Friebele, and R. Kashyap, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 1999) 33, paper DB3, 385–387.
  33. W. N. Martens, R. L. Frost, J. Kristof, and J. Theo Kloprogge, “Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K,” J. Raman Spectrosc.33, 84–91 (2002).
    [CrossRef]

2012

2011

2010

2009

2008

2007

2006

2004

2003

2002

W. N. Martens, R. L. Frost, J. Kristof, and J. Theo Kloprogge, “Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K,” J. Raman Spectrosc.33, 84–91 (2002).
[CrossRef]

1999

1997

V. Pruneri and P. G. Kazansky, “Frequency doubling of picosecond pulses in periodically-poled D-shaped silica fibre,” Electron. Lett.33, 318–319 (1997).
[CrossRef]

1996

1995

W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature378, 699–701 (1995).
[CrossRef]

1990

1989

F. Oullette, K. O. Hill, and D. C. Johnson, “Enhancement of second-harmonic generation in optical fibers by a hydrogen and heat treatment,” Appl. Phys. Lett.54(12), 1086–1088 (1989).
[CrossRef]

1987

1986

1983

R. L. McCreery, M. Fleischmann, and P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem.55 (1), 146–148 (1983).
[CrossRef]

Addison, C.

Angel, S.

Angel, S.M.

Baker, J.

Bao, H.

Berto, P.

Billaudeau, C.

Blades, M.

Bonfrate, G.

Boudoux, C.

Bouma, B. E.

Bouwmans, G.

Broderick, N. G.

Brunetti, A. C.

A. C. Brunetti, L. Scolari, T. Lund-Hansen, J. Weirich, and K. Rottwitt, “All-in-fiber Rayleigh-rejection filter for Raman spectroscopy,” Electron. Lett.48(5), 275–276 (2012).
[CrossRef]

Brustlein, S.

Buric, M.

Canagasabey, A.

Cao, H.

Chen, K.

Choi, H. Y.

Choi, W. J.

Cooney, T.

Corbari, C.

Daxhelet, X.

de Sandro, J. P.

Dianov, E. M.

Falk, J.

Ferrand, P.

Fleischmann, M.

R. L. McCreery, M. Fleischmann, and P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem.55 (1), 146–148 (1983).
[CrossRef]

Fokine, M.

M. Fokine and W. Margulis, “Photoinduced refractive index changes in frequency doubling fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, T. Erdogan, E. Friebele, and R. Kashyap, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 1999) 33, paper DB3, 385–387.

Frost, R. L.

W. N. Martens, R. L. Frost, J. Kristof, and J. Theo Kloprogge, “Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K,” J. Raman Spectrosc.33, 84–91 (2002).
[CrossRef]

Frosz, M.

Fu, L.

Ghenuche, P.

Gladyshev, A.V.

Gmitro, A.

Godbout, N.

Griffiths, P.

Gu, C.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett.89 (20), 204101 (2006).
[CrossRef]

Gu, M.

Guillemet, S.

Hendra, P.

R. L. McCreery, M. Fleischmann, and P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem.55 (1), 146–148 (1983).
[CrossRef]

Hernandez, Y.

Hill, K. O.

F. Oullette, K. O. Hill, and D. C. Johnson, “Enhancement of second-harmonic generation in optical fibers by a hydrogen and heat treatment,” Appl. Phys. Lett.54(12), 1086–1088 (1989).
[CrossRef]

Hostein, R.

Hou, L.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett.89 (20), 204101 (2006).
[CrossRef]

Ibsen, M.

Jin, G.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett.89 (20), 204101 (2006).
[CrossRef]

Johnson, D. C.

F. Oullette, K. O. Hill, and D. C. Johnson, “Enhancement of second-harmonic generation in optical fibers by a hydrogen and heat treatment,” Appl. Phys. Lett.54(12), 1086–1088 (1989).
[CrossRef]

Joly, N.

Ju, M. J.

Jung, Y.

Kano, A.

Kashyap, R.

R. Kashyap, “Poling of glasses and optical fibers,” in Fiber Bragg Gratings, 2nd ed., (Academic press, 2010), pp. 527–596.
[CrossRef]

Kazansky, P. G.

Kazansky, P.G.

Kim, K.-T.

Kirkpatrick, N.

Knight, J.

Konorov, S.

Kosolapov, A.

Kristof, J.

W. N. Martens, R. L. Frost, J. Kristof, and J. Theo Kloprogge, “Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K,” J. Raman Spectrosc.33, 84–91 (2002).
[CrossRef]

Laurell, F.

W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature378, 699–701 (1995).
[CrossRef]

Lee, B. H.

Lemire-Renaud, S.

Lesche, B.

W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature378, 699–701 (1995).
[CrossRef]

Levenson, J. A.

Lewis, I.

Liegeois, F.

Liu, J.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett.89 (20), 204101 (2006).
[CrossRef]

Lund-Hansen, T.

A. C. Brunetti, L. Scolari, T. Lund-Hansen, J. Weirich, and K. Rottwitt, “All-in-fiber Rayleigh-rejection filter for Raman spectroscopy,” Electron. Lett.48(5), 275–276 (2012).
[CrossRef]

Marguet, D.

Margulis, W.

W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature378, 699–701 (1995).
[CrossRef]

U. Österberg and W. Margulis, “Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber,” Opt. Lett.11, 516–518 (1986).
[CrossRef] [PubMed]

M. Fokine and W. Margulis, “Photoinduced refractive index changes in frequency doubling fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, T. Erdogan, E. Friebele, and R. Kashyap, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 1999) 33, paper DB3, 385–387.

Martens, W. N.

W. N. Martens, R. L. Frost, J. Kristof, and J. Theo Kloprogge, “Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K,” J. Raman Spectrosc.33, 84–91 (2002).
[CrossRef]

McCreery, R. L.

R. L. McCreery, M. Fleischmann, and P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem.55 (1), 146–148 (1983).
[CrossRef]

Morneau, D.

Muir, A.

Myaing, M.

Myrick, M.L.

Na, J. H.

Norris, T.

Österberg, U.

Oullette, F.

F. Oullette, K. O. Hill, and D. C. Johnson, “Enhancement of second-harmonic generation in optical fibers by a hydrogen and heat treatment,” Appl. Phys. Lett.54(12), 1086–1088 (1989).
[CrossRef]

Pelletier, M.J.

M.J. Pelletier, “Fiber optic probe with integral optical filtering,” USA Patent no. 5862273 (1999).

Pruneri, V.

Rammler, S.

Redding, B.

Richards-Kortum, R. R.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8, 121–147 (2003).
[CrossRef] [PubMed]

Richardson, D. J

Rigneault, H.

Rivard, M.

Rottwitt, K.

A. C. Brunetti, L. Scolari, T. Lund-Hansen, J. Weirich, and K. Rottwitt, “All-in-fiber Rayleigh-rejection filter for Raman spectroscopy,” Electron. Lett.48(5), 275–276 (2012).
[CrossRef]

Russell, P. St. J.

Russell, P.St.J.

Ryu, S. Y.

Scharrer, M.

Schulze, H.

Scolari, L.

A. C. Brunetti, L. Scolari, T. Lund-Hansen, J. Weirich, and K. Rottwitt, “All-in-fiber Rayleigh-rejection filter for Raman spectroscopy,” Electron. Lett.48(5), 275–276 (2012).
[CrossRef]

Simonneau, C.

Skinner, H.

Stolen, R.H.

Strupler, M.

Tanbakuchi, A.

Tao, W.

Tearney, G. J.

Theo Kloprogge, J.

W. N. Martens, R. L. Frost, J. Kristof, and J. Theo Kloprogge, “Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K,” J. Raman Spectrosc.33, 84–91 (2002).
[CrossRef]

Thomas, T.

Tom, H.W.K.

Turner, R.

Udovich, J.

Utzinger, U.

Verpillat, F.

Vidakovic, P.

Wadsworth, W.

Wang, L.

Weirich, J.

A. C. Brunetti, L. Scolari, T. Lund-Hansen, J. Weirich, and K. Rottwitt, “All-in-fiber Rayleigh-rejection filter for Raman spectroscopy,” Electron. Lett.48(5), 275–276 (2012).
[CrossRef]

Wenger, J.

Woodruff, S.

Yan, H.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett.89 (20), 204101 (2006).
[CrossRef]

Yang, C.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett.89 (20), 204101 (2006).
[CrossRef]

Yao, Y.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett.89 (20), 204101 (2006).
[CrossRef]

Yashkov, M. V.

Ye, J.

Yelin, D.

Yun, S. H.

Zhang, J.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett.89 (20), 204101 (2006).
[CrossRef]

Zhaowei, Z.

Anal. Chem.

R. L. McCreery, M. Fleischmann, and P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem.55 (1), 146–148 (1983).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett.89 (20), 204101 (2006).
[CrossRef]

F. Oullette, K. O. Hill, and D. C. Johnson, “Enhancement of second-harmonic generation in optical fibers by a hydrogen and heat treatment,” Appl. Phys. Lett.54(12), 1086–1088 (1989).
[CrossRef]

Appl. Spectrosc.

Electron. Lett.

A. C. Brunetti, L. Scolari, T. Lund-Hansen, J. Weirich, and K. Rottwitt, “All-in-fiber Rayleigh-rejection filter for Raman spectroscopy,” Electron. Lett.48(5), 275–276 (2012).
[CrossRef]

V. Pruneri and P. G. Kazansky, “Frequency doubling of picosecond pulses in periodically-poled D-shaped silica fibre,” Electron. Lett.33, 318–319 (1997).
[CrossRef]

J. Biomed. Opt.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8, 121–147 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Korea

J. Raman Spectrosc.

W. N. Martens, R. L. Frost, J. Kristof, and J. Theo Kloprogge, “Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K,” J. Raman Spectrosc.33, 84–91 (2002).
[CrossRef]

Nature

W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature378, 699–701 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

M. Myaing, J. Ye, T. Norris, T. Thomas, J. Baker, W. Wadsworth, G. Bouwmans, J. Knight, and P. St. J. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett.28, 1224–1226 (2003).
[CrossRef] [PubMed]

L. Fu and M. Gu, “Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging,” Opt. Lett.31(10), 1471–1473 (2006).
[CrossRef] [PubMed]

H. Bao, S. Y. Ryu, B. H. Lee, W. Tao, and M. Gu, “Nonlinear endomicroscopy using a double-clad fiber coupler,” Opt. Lett.35, 995–997 (2010).
[CrossRef] [PubMed]

D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, “Double-clad fiber for endoscopy,” Opt. Lett.29 (20), 2408–2410 (2004).
[CrossRef] [PubMed]

P. Ghenuche, S. Rammler, N. Joly, M. Scharrer, M. Frosz, J. Wenger, P.St.J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett.37, 4371–4373 (2012).
[CrossRef] [PubMed]

R.H. Stolen and H.W.K. Tom, “Self-organized phase-matched harmonic generation in optical fibers,” Opt. Lett.12(8), 585–587 (1987).
[CrossRef] [PubMed]

S. Konorov, C. Addison, H. Schulze, R. Turner, and M. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett.31, 1911–1913 (2006).
[CrossRef] [PubMed]

A. Canagasabey, C. Corbari, A.V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Yashkov, A. Kosolapov, E. M. Dianov, M. Ibsen, and P.G. Kazansky, “High-average-power second-harmonic generation from periodically poled silica fibers,” Opt. Lett.34, 2483–2485 (2009).
[CrossRef] [PubMed]

U. Österberg and W. Margulis, “Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber,” Opt. Lett.11, 516–518 (1986).
[CrossRef] [PubMed]

B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett.37(16), 3384–3386 (2012).
[CrossRef]

V. Pruneri, G. Bonfrate, P. G. Kazansky, D. J Richardson, N. G. Broderick, J. P. de Sandro, C. Simonneau, P. Vidakovic, and J. A. Levenson, “Greater than 20%-efficient frequency-doubling of 1532-nm nanosecond pulses in quasi-phase matched germanosilicate optical fibers,” Opt. Lett.24, 208–210 (1999).
[CrossRef]

A. Canagasabey, C. Corbari, Z. Zhaowei, P. G. Kazansky, and M. Ibsen, “Broadly tunable second-harmonic generation in periodically poled silica fibers,” Opt. Lett.32, 1863–1865 (2007).
[CrossRef] [PubMed]

Other

M.J. Pelletier, “Fiber optic probe with integral optical filtering,” USA Patent no. 5862273 (1999).

R. Kashyap, “Poling of glasses and optical fibers,” in Fiber Bragg Gratings, 2nd ed., (Academic press, 2010), pp. 527–596.
[CrossRef]

M. Fokine and W. Margulis, “Photoinduced refractive index changes in frequency doubling fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, T. Erdogan, E. Friebele, and R. Kashyap, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 1999) 33, paper DB3, 385–387.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Cross-section of the dual-clad fiber used all throughout this work; the slightly darker circle sorrounding the ge-doped core is due to the fiber fabrication process (caning procedure). This waveguide was specifically designed for this work. (b) Angle-cleaved tip (about 11°) on the sample side.

Fig. 2
Fig. 2

Growth of the SHG over time, measured at the output of the double-clad fiber and after a 20x focusing lens and an additional IR mirror. After an initial adjustment of the relative phase of the fundamental and SH waves which follows the removal of the seed, the unseeded growth is exponential in time.

Fig. 3
Fig. 3

Schematic illustration of the double-clad fiber coupler. The fibers are crossed the one over the other 4 times to ensure a close contact. A drop of index-matching oil (not shown) is poured over the coupler to facilitate the coupling. IR light (red arrow) is injected into the core of the poled fiber of the coupler at the end of which both the fundamental (not shown) and the SH (green) illuminate the sample. ∼ 50% of the collected scattering (orange), propagating in the inner clad, couples out to the second fiber of the coupler. Rayleigh-scattered light not shown.

Fig. 4
Fig. 4

Schematic illustration of the first experimental setup: SHG takes place along the core of the double-clad fiber, while the Raman-scattered light is collected in the inner cladding. A bulk dichroic mirror demultiplexes the IR radiation injected into the fiber and the collected signal.

Fig. 5
Fig. 5

Schematic illustration of the second experimental setup: SHG takes place along the core of one arm of the coupler, while the Raman-scattered light is collected in the inner cladding of the same waveguide, then couples out to the inner cladding of the second fiber.

Fig. 6
Fig. 6

Raman spectrum of DMSO acquired with the presented double-clad fiber-based probe over a 15s acquisition time repeated twice, from which the spectrum of the fiber has been subtracted. Inset: spectrum of DMSO as it appears before the subtraction. The notch appearing at about 2450cm−1 is due to the spectral subtraction.

Fig. 7
Fig. 7

Raman spectrum of DMSO acquired with the presented double-clad fiber coupler-based probe over a 15s acquisition time repeated three times.

Fig. 8
Fig. 8

Raman spectrum of DMSO acquired with the presented double-clad fiber coupler-based probe over a 15s acquisition time repeated three times, from which the spectrum of the fiber has been subtracted.

Metrics