Abstract

A wrapping-on-a-rod technique is presented and demonstrated successfully to realize broadband microfiber-based highly birefringent (Hi-Bi) devices with 3D geometry. By wrapping a circular microfiber (MF) on a Teflon-coated rod (2 mm in diameter), a large and broadband birefringence can be obtained utilizing a rod-microfiber-air (RMA) structure. Wavelength scanning method is used to measure the birefringence of the device. Results show that group birefringence as high as 10−3 can be achieved over 400 nm wavelength range. This compact element presents great potential in sensing and communication applications, as well as lab-on-a-rod devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibres with asymmetrical strain birefringence,” Electron. Lett.17(15), 530–531 (1981).
    [CrossRef]
  2. M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-polarization operation of highly birefringent bow-tie optical fibres,” Electron. Lett.19(7), 246–247 (1983).
    [CrossRef]
  3. V. Ramaswamy, R. H. Stolen, M. D. Divino, and W. Pleibel, “Birefringence in elliptically clad borosilicate single-mode fibers,” Appl. Opt.18(24), 4080–4084 (1979).
    [CrossRef] [PubMed]
  4. A. Kumar, V. Gupta, and K. Thyagarajan, “Geometrical birefringence of polished and D-shape fibers,” Opt. Commun.61(3), 195–198 (1987).
    [CrossRef]
  5. R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett.15(13), 380–382 (1979).
    [CrossRef]
  6. X. Chen, M. J. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K. W. Koch, “Highly birefringent hollow-core photonic bandgap fiber,” Opt. Express12(16), 3888–3893 (2004).
    [CrossRef] [PubMed]
  7. J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel)12(7), 8861–8876 (2012).
    [CrossRef] [PubMed]
  8. M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett.24(14), 1209–1211 (2012).
    [CrossRef]
  9. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 043001 (2010).
    [CrossRef]
  10. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express18(13), 14245–14250 (2010).
    [CrossRef] [PubMed]
  11. J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express19(19), 18452–18457 (2011).
    [CrossRef] [PubMed]
  12. Y. Jung, G. Brambilla, K. Oh, and D. J. Richardson, “Highly birefringent silica microfiber,” Opt. Lett.35(3), 378–380 (2010).
    [CrossRef] [PubMed]
  13. L. Sun, J. Li, Y. Tan, X. Shen, X. Xie, S. Gao, and B. O. Guan, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Opt. Express20(9), 10180–10185 (2012).
    [CrossRef] [PubMed]
  14. H. Xuan, J. Ju, and W. Jin, “Highly birefringent optical microfibers,” Opt. Express18(4), 3828–3839 (2010).
    [CrossRef] [PubMed]
  15. Y. Jung, G. Brambilla, and D. J. Richardson, “Polarization-maintaining optical microfiber,” Opt. Lett.35(12), 2034–2036 (2010).
    [CrossRef] [PubMed]
  16. G. Wang, P. P. Shum, L. Tong, C. M. Li, and C. Lin, “Polarization effects in microfiber loop and knot resonators,” IEEE Photon. Technol. Lett.22(8), 586–588 (2010).
    [CrossRef]
  17. J. L. Kou, F. Xu, and Y. Q. Lu, “Highly birefringent slot-microfiber,” IEEE Photon. Technol. Lett.23(15), 1034–1036 (2011).
    [CrossRef]
  18. S. C. Rashleigh and R. Ulrich, “High birefringence in tension-coiled single-mode fibers,” Opt. Lett.5(8), 354–356 (1980).
    [CrossRef] [PubMed]
  19. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
    [CrossRef]
  20. J. L. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B102(3), 615–619 (2011).
    [CrossRef]
  21. O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland)7(11), 2970–2983 (2007).
    [CrossRef]
  22. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett.5(6), 273–275 (1980).
    [CrossRef] [PubMed]

2012 (3)

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel)12(7), 8861–8876 (2012).
[CrossRef] [PubMed]

M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett.24(14), 1209–1211 (2012).
[CrossRef]

L. Sun, J. Li, Y. Tan, X. Shen, X. Xie, S. Gao, and B. O. Guan, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Opt. Express20(9), 10180–10185 (2012).
[CrossRef] [PubMed]

2011 (4)

J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express19(19), 18452–18457 (2011).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

J. L. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B102(3), 615–619 (2011).
[CrossRef]

J. L. Kou, F. Xu, and Y. Q. Lu, “Highly birefringent slot-microfiber,” IEEE Photon. Technol. Lett.23(15), 1034–1036 (2011).
[CrossRef]

2010 (6)

2007 (1)

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland)7(11), 2970–2983 (2007).
[CrossRef]

2004 (1)

1987 (1)

A. Kumar, V. Gupta, and K. Thyagarajan, “Geometrical birefringence of polished and D-shape fibers,” Opt. Commun.61(3), 195–198 (1987).
[CrossRef]

1983 (1)

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-polarization operation of highly birefringent bow-tie optical fibres,” Electron. Lett.19(7), 246–247 (1983).
[CrossRef]

1981 (1)

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibres with asymmetrical strain birefringence,” Electron. Lett.17(15), 530–531 (1981).
[CrossRef]

1980 (2)

1979 (2)

V. Ramaswamy, R. H. Stolen, M. D. Divino, and W. Pleibel, “Birefringence in elliptically clad borosilicate single-mode fibers,” Appl. Opt.18(24), 4080–4084 (1979).
[CrossRef] [PubMed]

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett.15(13), 380–382 (1979).
[CrossRef]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Baptista, J. M.

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland)7(11), 2970–2983 (2007).
[CrossRef]

Birch, R. D.

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-polarization operation of highly birefringent bow-tie optical fibres,” Electron. Lett.19(7), 246–247 (1983).
[CrossRef]

Brambilla, G.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel)12(7), 8861–8876 (2012).
[CrossRef] [PubMed]

M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett.24(14), 1209–1211 (2012).
[CrossRef]

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 043001 (2010).
[CrossRef]

Y. Jung, G. Brambilla, K. Oh, and D. J. Richardson, “Highly birefringent silica microfiber,” Opt. Lett.35(3), 378–380 (2010).
[CrossRef] [PubMed]

Y. Jung, G. Brambilla, and D. J. Richardson, “Polarization-maintaining optical microfiber,” Opt. Lett.35(12), 2034–2036 (2010).
[CrossRef] [PubMed]

Carberry, J. P.

Chen, X.

Cozens, J. R.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett.15(13), 380–382 (1979).
[CrossRef]

Crowley, A. M.

Ding, M.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel)12(7), 8861–8876 (2012).
[CrossRef] [PubMed]

M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett.24(14), 1209–1211 (2012).
[CrossRef]

Divino, M. D.

Dyott, R. B.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett.15(13), 380–382 (1979).
[CrossRef]

Edahiro, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibres with asymmetrical strain birefringence,” Electron. Lett.17(15), 530–531 (1981).
[CrossRef]

Eickhoff, W.

Feng, J.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel)12(7), 8861–8876 (2012).
[CrossRef] [PubMed]

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express18(13), 14245–14250 (2010).
[CrossRef] [PubMed]

Frazão, O.

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland)7(11), 2970–2983 (2007).
[CrossRef]

Gallagher, M. T.

Gao, S.

Guan, B. O.

Gupta, V.

A. Kumar, V. Gupta, and K. Thyagarajan, “Geometrical birefringence of polished and D-shape fibers,” Opt. Commun.61(3), 195–198 (1987).
[CrossRef]

Hosaka, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibres with asymmetrical strain birefringence,” Electron. Lett.17(15), 530–531 (1981).
[CrossRef]

Huang, Z. D.

J. L. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B102(3), 615–619 (2011).
[CrossRef]

Jin, W.

Ju, J.

Jung, Y.

Koch, K. W.

Kou, J. L.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel)12(7), 8861–8876 (2012).
[CrossRef] [PubMed]

J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express19(19), 18452–18457 (2011).
[CrossRef] [PubMed]

J. L. Kou, F. Xu, and Y. Q. Lu, “Highly birefringent slot-microfiber,” IEEE Photon. Technol. Lett.23(15), 1034–1036 (2011).
[CrossRef]

J. L. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B102(3), 615–619 (2011).
[CrossRef]

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express18(13), 14245–14250 (2010).
[CrossRef] [PubMed]

Kumar, A.

A. Kumar, V. Gupta, and K. Thyagarajan, “Geometrical birefringence of polished and D-shape fibers,” Opt. Commun.61(3), 195–198 (1987).
[CrossRef]

Li, C. M.

G. Wang, P. P. Shum, L. Tong, C. M. Li, and C. Lin, “Polarization effects in microfiber loop and knot resonators,” IEEE Photon. Technol. Lett.22(8), 586–588 (2010).
[CrossRef]

Li, J.

Li, M. J.

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Lin, C.

G. Wang, P. P. Shum, L. Tong, C. M. Li, and C. Lin, “Polarization effects in microfiber loop and knot resonators,” IEEE Photon. Technol. Lett.22(8), 586–588 (2010).
[CrossRef]

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Lu, Y. Q.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel)12(7), 8861–8876 (2012).
[CrossRef] [PubMed]

J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express19(19), 18452–18457 (2011).
[CrossRef] [PubMed]

J. L. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B102(3), 615–619 (2011).
[CrossRef]

J. L. Kou, F. Xu, and Y. Q. Lu, “Highly birefringent slot-microfiber,” IEEE Photon. Technol. Lett.23(15), 1034–1036 (2011).
[CrossRef]

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express18(13), 14245–14250 (2010).
[CrossRef] [PubMed]

Miya, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibres with asymmetrical strain birefringence,” Electron. Lett.17(15), 530–531 (1981).
[CrossRef]

Morris, D. G.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett.15(13), 380–382 (1979).
[CrossRef]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Oh, K.

Okamoto, K.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibres with asymmetrical strain birefringence,” Electron. Lett.17(15), 530–531 (1981).
[CrossRef]

Payne, D. N.

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-polarization operation of highly birefringent bow-tie optical fibres,” Electron. Lett.19(7), 246–247 (1983).
[CrossRef]

Pleibel, W.

Qiu, S. J.

Ramaswamy, V.

Rashleigh, S. C.

Richardson, D. J.

Santos, J. L.

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland)7(11), 2970–2983 (2007).
[CrossRef]

Sasaki, Y.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibres with asymmetrical strain birefringence,” Electron. Lett.17(15), 530–531 (1981).
[CrossRef]

Shen, X.

Shum, P. P.

G. Wang, P. P. Shum, L. Tong, C. M. Li, and C. Lin, “Polarization effects in microfiber loop and knot resonators,” IEEE Photon. Technol. Lett.22(8), 586–588 (2010).
[CrossRef]

Stolen, R. H.

Sun, L.

Tan, Y.

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Tarbox, E. J.

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-polarization operation of highly birefringent bow-tie optical fibres,” Electron. Lett.19(7), 246–247 (1983).
[CrossRef]

Thyagarajan, K.

A. Kumar, V. Gupta, and K. Thyagarajan, “Geometrical birefringence of polished and D-shape fibers,” Opt. Commun.61(3), 195–198 (1987).
[CrossRef]

Tong, L.

G. Wang, P. P. Shum, L. Tong, C. M. Li, and C. Lin, “Polarization effects in microfiber loop and knot resonators,” IEEE Photon. Technol. Lett.22(8), 586–588 (2010).
[CrossRef]

Ulrich, R.

Varnham, M. P.

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-polarization operation of highly birefringent bow-tie optical fibres,” Electron. Lett.19(7), 246–247 (1983).
[CrossRef]

Venkataraman, N.

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Wang, G.

G. Wang, P. P. Shum, L. Tong, C. M. Li, and C. Lin, “Polarization effects in microfiber loop and knot resonators,” IEEE Photon. Technol. Lett.22(8), 586–588 (2010).
[CrossRef]

Wang, P.

M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett.24(14), 1209–1211 (2012).
[CrossRef]

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Wood, W. A.

Xie, X.

Xu, F.

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel)12(7), 8861–8876 (2012).
[CrossRef] [PubMed]

J. L. Kou, F. Xu, and Y. Q. Lu, “Highly birefringent slot-microfiber,” IEEE Photon. Technol. Lett.23(15), 1034–1036 (2011).
[CrossRef]

J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express19(19), 18452–18457 (2011).
[CrossRef] [PubMed]

J. L. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B102(3), 615–619 (2011).
[CrossRef]

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express18(13), 14245–14250 (2010).
[CrossRef] [PubMed]

Xuan, H.

Ye, L.

Zenteno, L. A.

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Zhu, G.

J. L. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B102(3), 615–619 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

J. L. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B102(3), 615–619 (2011).
[CrossRef]

Electron. Lett. (3)

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett.15(13), 380–382 (1979).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibres with asymmetrical strain birefringence,” Electron. Lett.17(15), 530–531 (1981).
[CrossRef]

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-polarization operation of highly birefringent bow-tie optical fibres,” Electron. Lett.19(7), 246–247 (1983).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett.24(14), 1209–1211 (2012).
[CrossRef]

G. Wang, P. P. Shum, L. Tong, C. M. Li, and C. Lin, “Polarization effects in microfiber loop and knot resonators,” IEEE Photon. Technol. Lett.22(8), 586–588 (2010).
[CrossRef]

J. L. Kou, F. Xu, and Y. Q. Lu, “Highly birefringent slot-microfiber,” IEEE Photon. Technol. Lett.23(15), 1034–1036 (2011).
[CrossRef]

J. Opt. (1)

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 043001 (2010).
[CrossRef]

Nat. Photonics (1)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Opt. Commun. (1)

A. Kumar, V. Gupta, and K. Thyagarajan, “Geometrical birefringence of polished and D-shape fibers,” Opt. Commun.61(3), 195–198 (1987).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Sensors (Basel Switzerland) (1)

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland)7(11), 2970–2983 (2007).
[CrossRef]

Sensors (Basel) (1)

J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel)12(7), 8861–8876 (2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup and schematic of the proposed structure (the black dashed box). In side the box, the blue, pink and yellow part is the MF, Teflon coating and supporting rod, respectively. The rod is 2 mm in diameter and the coating is tens of micrometers in thickness.

Fig. 2
Fig. 2

Cross section and electric field distribution of the RMA structure. Refractive index of different material is labeled in the figure. The green arrow and white dashed line indicates the polarization direction and the boundary between Teflon and air. Inset: electric field distribution of the y-polarized mode. The field is calculated at a wavelength of 1550 nm and rMF = 1 μm.

Fig. 3
Fig. 3

Calculated Bphase of the proposed structure as a function of the radius of the MF and operation wavelength.

Fig. 4
Fig. 4

Measured transmission spectra of the proposed RMA structure. The blue line is the insertion loss of Sample 1. The green and red line is the transmission of two devices with MF of different diameter (green for Sample 1, dMF = 1.5 μm and red for Sample 2, dMF = 1.7 μm). Inset: optical microscopic picture of one sample. The pink boxes indicate two coils of MF. The distance between the coil is ~100 μm.

Fig. 5
Fig. 5

Bgroup calculated from FEM method (3D mesh) and that from experimental transmission spectrum (solid asterisks with different colors). Inset: 2D illustration of the experimental (solid asterisks with different colors) and theoretical (blue lines) results of two samples with different radius (left for rMF = 0.9 μm and right for rMF = 1.2 μm). The data is extracted form the 3D mesh.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T(λ) cos 2 ( π B phase (θ,λ)Rdθ λ )
B group (λ, r MF ) λ ¯ 2 FSR×L
B group = B phase λ d B phase dλ

Metrics