Abstract

The feature of a multicore fiber with one-ring structure is theoretically analyzed and experimentally demonstrated. The one-ring structure overcomes the issues of the hexagonal close-pack structure. The possibility of 10-core fiber with Aeff of 110 μm2 and 12-core fiber with Aeff of 80 μm2 is theoretically presented. The fabricated 12-core fibers based on the simulation results realized Aeff of 80 μm2 and crosstalk less than −40 dB at 1550 nm after 100-km propagation. The MCF with the number of core larger than seven and the small crosstalk was demonstrated for the first time.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ4.
  2. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express19(17), 16576–16592 (2011).
    [CrossRef] [PubMed]
  3. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express19(17), 16665–16671 (2011).
    [CrossRef] [PubMed]
  4. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express19(26), B543–B550 (2011).
    [CrossRef] [PubMed]
  5. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
    [CrossRef] [PubMed]
  6. Y. Sasaki, K. Takenaga, Y. Arakawa, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “Large-effective-area uncoupled 10-core fiber with two-pitch layout,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OM2D.4.
  7. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signal at 305 Tb/s,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper PDP5C.1.
  8. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-loss and large-Aeff multi-core fiber for SNR enhancement,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Mo.1.F.3.
  9. K. Imamura, H. Inaba, K. Mukasa, and R. Sugizaki, “Multi core fiber with large Aeff of 140 μm2 and low crosstalk,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Mo.1.F.2.
  10. H. Takara, H. Ono, Y. Abe, H. Masuda, K. Takenaga, S. Matsuo, H. Kubota, K. Shibahara, T. Kobayashi, and Y. Miaymoto, “1000-km 7-core fiber transmission of 10 x 96-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber,” Opt. Express20(9), 10100–10105 (2012).
    [CrossRef] [PubMed]
  11. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SMD/222 WDM 456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Th.3.C.1.
  12. H. Takahashi, T. Tsuritani, E. L. T. de Gabory, T. Ito, W. R. Peng, K. Igarashi, K. Takashima, Y. Kawaguchi, I. Morita, Y. Tsuchida, Y. Mimura, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “First demonstration of MC-EDFA-repeatered SDM transmission of 40x128-Gbit/s PDM-QPSK signals per core over 6,160-km 7-core MCF,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Th.3.C.3.
  13. K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multi-core fibers,” IEEE Photon. Technol. Lett.24(21), 1898–1901 (2012).
    [CrossRef]
  14. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002).
    [CrossRef]
  15. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J.4(5), 1987–1995 (2012).
    [CrossRef]
  16. IEC Standard 60793–1-44, Measurement Methods and Test Procedures- Cutoff Wavelength (2011).
  17. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. on Commun,” E94-B(2), 409–416 (2011).

2012

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J.4(5), 1987–1995 (2012).
[CrossRef]

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multi-core fibers,” IEEE Photon. Technol. Lett.24(21), 1898–1901 (2012).
[CrossRef]

H. Takara, H. Ono, Y. Abe, H. Masuda, K. Takenaga, S. Matsuo, H. Kubota, K. Shibahara, T. Kobayashi, and Y. Miaymoto, “1000-km 7-core fiber transmission of 10 x 96-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber,” Opt. Express20(9), 10100–10105 (2012).
[CrossRef] [PubMed]

2011

2002

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002).
[CrossRef]

Abe, Y.

Arakawa, Y.

Chandrasekhar, S.

Dimarcello, F. V.

Fini, J. M.

Fishteyn, M.

Guan, N.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. on Commun,” E94-B(2), 409–416 (2011).

Hayashi, T.

Kobayashi, T.

Koshiba, M.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J.4(5), 1987–1995 (2012).
[CrossRef]

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multi-core fibers,” IEEE Photon. Technol. Lett.24(21), 1898–1901 (2012).
[CrossRef]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express19(26), B543–B550 (2011).
[CrossRef] [PubMed]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
[CrossRef] [PubMed]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. on Commun,” E94-B(2), 409–416 (2011).

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002).
[CrossRef]

Kubota, H.

Liu, X.

Masuda, H.

Matsuo, S.

H. Takara, H. Ono, Y. Abe, H. Masuda, K. Takenaga, S. Matsuo, H. Kubota, K. Shibahara, T. Kobayashi, and Y. Miaymoto, “1000-km 7-core fiber transmission of 10 x 96-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber,” Opt. Express20(9), 10100–10105 (2012).
[CrossRef] [PubMed]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J.4(5), 1987–1995 (2012).
[CrossRef]

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multi-core fibers,” IEEE Photon. Technol. Lett.24(21), 1898–1901 (2012).
[CrossRef]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
[CrossRef] [PubMed]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express19(26), B543–B550 (2011).
[CrossRef] [PubMed]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. on Commun,” E94-B(2), 409–416 (2011).

Miaymoto, Y.

Monberg, E. M.

Ono, H.

Saitoh, K.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J.4(5), 1987–1995 (2012).
[CrossRef]

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multi-core fibers,” IEEE Photon. Technol. Lett.24(21), 1898–1901 (2012).
[CrossRef]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express19(26), B543–B550 (2011).
[CrossRef] [PubMed]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
[CrossRef] [PubMed]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. on Commun,” E94-B(2), 409–416 (2011).

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002).
[CrossRef]

Sasaki, T.

Sasaki, Y.

Sasaoka, E.

Shibahara, K.

Shimakawa, O.

Takara, H.

Takenaga, K.

H. Takara, H. Ono, Y. Abe, H. Masuda, K. Takenaga, S. Matsuo, H. Kubota, K. Shibahara, T. Kobayashi, and Y. Miaymoto, “1000-km 7-core fiber transmission of 10 x 96-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber,” Opt. Express20(9), 10100–10105 (2012).
[CrossRef] [PubMed]

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J.4(5), 1987–1995 (2012).
[CrossRef]

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multi-core fibers,” IEEE Photon. Technol. Lett.24(21), 1898–1901 (2012).
[CrossRef]

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011).
[CrossRef] [PubMed]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express19(26), B543–B550 (2011).
[CrossRef] [PubMed]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. on Commun,” E94-B(2), 409–416 (2011).

Taniagwa, S.

Tanigawa, S.

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express19(26), B543–B550 (2011).
[CrossRef] [PubMed]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. on Commun,” E94-B(2), 409–416 (2011).

Taru, T.

Taunay, T. F.

Yan, M. F.

Zhu, B.

IEEE J. Quantum Electron.

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002).
[CrossRef]

IEEE Photon. J.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J.4(5), 1987–1995 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multi-core fibers,” IEEE Photon. Technol. Lett.24(21), 1898–1901 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Other

IEC Standard 60793–1-44, Measurement Methods and Test Procedures- Cutoff Wavelength (2011).

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. on Commun,” E94-B(2), 409–416 (2011).

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ4.

Y. Sasaki, K. Takenaga, Y. Arakawa, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “Large-effective-area uncoupled 10-core fiber with two-pitch layout,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OM2D.4.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signal at 305 Tb/s,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper PDP5C.1.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-loss and large-Aeff multi-core fiber for SNR enhancement,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Mo.1.F.3.

K. Imamura, H. Inaba, K. Mukasa, and R. Sugizaki, “Multi core fiber with large Aeff of 140 μm2 and low crosstalk,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Mo.1.F.2.

H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SMD/222 WDM 456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Th.3.C.1.

H. Takahashi, T. Tsuritani, E. L. T. de Gabory, T. Ito, W. R. Peng, K. Igarashi, K. Takashima, Y. Kawaguchi, I. Morita, Y. Tsuchida, Y. Mimura, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “First demonstration of MC-EDFA-repeatered SDM transmission of 40x128-Gbit/s PDM-QPSK signals per core over 6,160-km 7-core MCF,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Th.3.C.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of various kinds of MCF.

Fig. 2
Fig. 2

Cladding diameter dependence of maximum number of cores for HCPS: λc = 1.53 μm, Aeff at 1550 nm = 80 μm2 and 100-km XT at 1550 nm = −50 dB at bending radius of 500 mm. Core pitch Λ = 40 μm. Cladding thickness Tc = 30 μm.

Fig. 3
Fig. 3

Schematic diagram of a trench-assisted structure.

Fig. 4
Fig. 4

Structural parameter dependence of Aeff, cutoff wavelength and Λ-50.: (a) Results on 80-μm2 Aeff range. (b) Results on 110-μm2 Aeff range.

Fig. 5
Fig. 5

Cladding diameter dependence of maximum number of cores for ORS and HCPS: λc = 1.53 μm, Aeff at 1550 nm = 80 μm2 and 100-km XTworst at 1550nm = −47 dB at bending radius of 155 mm. Cladding thickness Tc = 30 μm. Λ = 36.5 μm for ORS. Λ = 40 μm for HCPS.

Fig. 6
Fig. 6

A cross sectional view of a fabricated 12-core fiber.

Fig. 7
Fig. 7

Estimated 100-km XT from the measured XT of the fabricated fibers.

Fig. 8
Fig. 8

The relationship between XTworst and the number of cores for SM-MCFs.

Tables (3)

Tables Icon

Table 1 ΔXT for various structures

Tables Icon

Table 2 Structural parameters and average characteristics of fabricated MCFs

Tables Icon

Table 3 Measurement results of fabricated MCFs

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

XT worst =XT+10logn,
ΔXT= XT worst XT.
XT=tanh(hL) 2κRL βΛ ,

Metrics