Abstract

A high-sensitivity ultrasonic sensing system is proposed and demonstrated. In this system, a phase-shifted fiber Bragg grating (PS-FBG) is used as a sensor to achieve broadband and highly sensitive detection. The PS-FBG modulates the output of a tunable laser to detect the ultrasonic strain directly. Balanced photo-detector (BPD) is used for eliminating the DC component and further amplifying the AC component in the detected signal. Another major function of the BPD is to reject laser intensity noise. As a result, the minimum detectable strain is limited by the BPD’s noise and laser frequency noise. The sensitivity of the system is 9 nε/Hz1/2. Because of its high sensitivity, this system has the potential to be used in acousto-ultrasonic testing without amplifying the input signal and in practical acoustic emission detection.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. U. Grosse and M. Ohtsu, Acoustic Emission Testing: Basics for Research—Applications in Civil Engineering, (Springer, 2008).
  2. G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J.8(7), 1184–1193 (2008).
    [CrossRef]
  3. G. Wild, S. Hinckley, and P. V. Jansz, “A transmit reflect detection system for fiber Bragg grating photonic sensors,” Proc. SPIE6801, 68010N, 68010N-9 (2007).
    [CrossRef]
  4. Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct.19(11), 115013 (2010).
    [CrossRef]
  5. I. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
    [CrossRef]
  6. Q. Wu and Y. Okabe, “Ultrasonic sensor employing two cascaded phase-shifted fiber Bragg gratings suitable for multiplexing,” Opt. Lett.37(16), 3336–3338 (2012).
    [CrossRef]
  7. H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel)10(12), 11248–11258 (2010).
    [CrossRef] [PubMed]
  8. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett.36(10), 1833–1835 (2011).
    [CrossRef] [PubMed]
  9. A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(2), 304–312 (2005).
    [CrossRef] [PubMed]
  10. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Wideband optical sensing using pulse interferometry,” Opt. Express20(17), 19016–19029 (2012).
    [CrossRef] [PubMed]
  11. J. H. Chow, I. C. Littler, D. E. McClelland, and M. B. Gray, “Laser frequency-noise-limited ultrahigh resolution remote fiber sensing,” Opt. Express14(11), 4617–4624 (2006).
    [CrossRef] [PubMed]
  12. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a pi-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express16(3), 1945–1950 (2008).
    [CrossRef] [PubMed]
  13. S. Avino, J. A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, and H. P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express19(25), 25057–25065 (2011).
    [CrossRef] [PubMed]
  14. http://assets.newport.com/webDocuments-EN/images/15192.pdf
  15. A. Arie, B. Lissak, and M. Tur, “Static fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol.17(10), 1849–1855 (1999).
    [CrossRef]
  16. M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory47(7), 1282–1288 (1999).
    [CrossRef]
  17. A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE5814, 39–50 (2005).
    [CrossRef]
  18. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997).
    [CrossRef]
  19. W. Jin, “Investigation of interferometric noise in fiber-optic Bragg grating sensors by use of tunable laser sources,” Appl. Opt.37(13), 2517–2525 (1998).
    [CrossRef] [PubMed]

2012

2011

2010

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel)10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct.19(11), 115013 (2010).
[CrossRef]

2008

2007

G. Wild, S. Hinckley, and P. V. Jansz, “A transmit reflect detection system for fiber Bragg grating photonic sensors,” Proc. SPIE6801, 68010N, 68010N-9 (2007).
[CrossRef]

2006

2005

A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE5814, 39–50 (2005).
[CrossRef]

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(2), 304–312 (2005).
[CrossRef] [PubMed]

2001

I. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
[CrossRef]

1999

A. Arie, B. Lissak, and M. Tur, “Static fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol.17(10), 1849–1855 (1999).
[CrossRef]

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory47(7), 1282–1288 (1999).
[CrossRef]

1998

1997

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997).
[CrossRef]

Arie, A.

Avino, S.

Barnes, J. A.

Becker, D.

A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE5814, 39–50 (2005).
[CrossRef]

Bernini, R.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(2), 304–312 (2005).
[CrossRef] [PubMed]

Chau, T.

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory47(7), 1282–1288 (1999).
[CrossRef]

Cho, A. Y.

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory47(7), 1282–1288 (1999).
[CrossRef]

Chow, J. H.

Cui, H. L.

I. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
[CrossRef]

Cusano, A.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(2), 304–312 (2005).
[CrossRef] [PubMed]

Fujibayashi, K.

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct.19(11), 115013 (2010).
[CrossRef]

Gagliardi, G.

Galzerano, G.

Gatti, D.

Giordano, M.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(2), 304–312 (2005).
[CrossRef] [PubMed]

Gray, M. B.

Gu, X.

Gutstein, D.

Hinckley, S.

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J.8(7), 1184–1193 (2008).
[CrossRef]

G. Wild, S. Hinckley, and P. V. Jansz, “A transmit reflect detection system for fiber Bragg grating photonic sensors,” Proc. SPIE6801, 68010N, 68010N-9 (2007).
[CrossRef]

Islam, M. S.

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory47(7), 1282–1288 (1999).
[CrossRef]

Itoh, T.

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory47(7), 1282–1288 (1999).
[CrossRef]

Janner, D.

Jansz, P. V.

G. Wild, S. Hinckley, and P. V. Jansz, “A transmit reflect detection system for fiber Bragg grating photonic sensors,” Proc. SPIE6801, 68010N, 68010N-9 (2007).
[CrossRef]

Jin, W.

Joshi, A.

A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE5814, 39–50 (2005).
[CrossRef]

Kumakura, K.

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel)10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Laporta, P.

Lissak, B.

Littler, I. C.

Longhi, S.

Loock, H. P.

Mathai, S.

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory47(7), 1282–1288 (1999).
[CrossRef]

McClelland, D. E.

Mester, J. R.

Minardo, A.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(2), 304–312 (2005).
[CrossRef] [PubMed]

Mohr, D.

A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE5814, 39–50 (2005).
[CrossRef]

Nicholaou, C.

Ntziachristos, V.

Ogihara, S.

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel)10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Ogisu, T.

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct.19(11), 115013 (2010).
[CrossRef]

Okabe, Y.

Q. Wu and Y. Okabe, “Ultrasonic sensor employing two cascaded phase-shifted fiber Bragg gratings suitable for multiplexing,” Opt. Lett.37(16), 3336–3338 (2012).
[CrossRef]

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct.19(11), 115013 (2010).
[CrossRef]

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997).
[CrossRef]

Perez, I.

I. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
[CrossRef]

Razansky, D.

Rosenthal, A.

Shimazaki, M.

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct.19(11), 115013 (2010).
[CrossRef]

Sivco, D. L.

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory47(7), 1282–1288 (1999).
[CrossRef]

Soejima, H.

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct.19(11), 115013 (2010).
[CrossRef]

Tsuda, H.

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel)10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Tur, M.

Udd, E.

I. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
[CrossRef]

Wang, X.

A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE5814, 39–50 (2005).
[CrossRef]

Wild, G.

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J.8(7), 1184–1193 (2008).
[CrossRef]

G. Wild, S. Hinckley, and P. V. Jansz, “A transmit reflect detection system for fiber Bragg grating photonic sensors,” Proc. SPIE6801, 68010N, 68010N-9 (2007).
[CrossRef]

Wree, C.

A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE5814, 39–50 (2005).
[CrossRef]

Wu, M. C.

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory47(7), 1282–1288 (1999).
[CrossRef]

Wu, Q.

Zeni, L.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(2), 304–312 (2005).
[CrossRef] [PubMed]

Appl. Opt.

IEEE Sens. J.

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. J.8(7), 1184–1193 (2008).
[CrossRef]

IEEE Trans. Microw. Theory

M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, and A. Y. Cho, “Distributed balanced photodetectors for broad-band noise suppression,” IEEE Trans. Microw. Theory47(7), 1282–1288 (1999).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(2), 304–312 (2005).
[CrossRef] [PubMed]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Proc. SPIE

A. Joshi, X. Wang, D. Mohr, D. Becker, and C. Wree, “Balanced photoreceivers for analog and digital fiber optic communications,” Proc. SPIE5814, 39–50 (2005).
[CrossRef]

G. Wild, S. Hinckley, and P. V. Jansz, “A transmit reflect detection system for fiber Bragg grating photonic sensors,” Proc. SPIE6801, 68010N, 68010N-9 (2007).
[CrossRef]

I. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
[CrossRef]

Rev. Sci. Instrum.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997).
[CrossRef]

Sensors (Basel)

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel)10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Smart Mater. Struct.

Y. Okabe, K. Fujibayashi, M. Shimazaki, H. Soejima, and T. Ogisu, “Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves,” Smart Mater. Struct.19(11), 115013 (2010).
[CrossRef]

Other

C. U. Grosse and M. Ohtsu, Acoustic Emission Testing: Basics for Research—Applications in Civil Engineering, (Springer, 2008).

http://assets.newport.com/webDocuments-EN/images/15192.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Setup and principle of the sensing system. (a) Schematic diagram of the sensing system: O-scope, oscilloscope; Amp, amplifier; FG, function generator; and P1/P2, port 1/port 2. (b) Principle of the sensing system.

Fig. 2
Fig. 2

Spectra of the FBGs are measured by sweeping the TLS. (a) The sharp peak in the spectrum of PS-FBG has a steep linear region. The inset shows the complete spectrum of the PS-FBG. (b) The spectrum of normal FBG has a linear region with a gentler slope than that of the PS-FBG.

Fig. 3
Fig. 3

The noise levels under the different experimental conditions. The BPD has the ability to reject the laser noise, especially when the input laser power in two ports of the BPD are balanced. The noise rejection performance achieves an effective noise level that is approximately the same as the noise in the BPD without laser input.

Fig. 4
Fig. 4

Temporal responses (a) and PSDs (b) obtained from three different sensing systems. Curve 1 is the signal obtained by the normal FBG sensing system after averaging over 1024 samples, and the inset in Fig. 4(a) is the detected signal in the same condition but without averaging. Curve 2 is the signal obtained by the PS-FBG sensing system. Curve 3 is the signal obtained by our novel PS-FBG balanced sensing system.

Fig. 5
Fig. 5

By changing the input laser power to three different levels, the detected signal is shown to be proportional to the laser power, but the increase of the noise level is much smaller than the increase of the laser power. The best SNR achieved in this experiment was 30 dB, which was when an input laser power of 3 dBm was used.

Fig. 6
Fig. 6

Due to the high sensitivity the system achieved, the generated ultrasonic waves without the need for an amplifier could be detected. In the experimental condition indicated by the blue line, the minimum detectable strain was generated by a 0.1-V signal, and the corresponding minimum detected sensitivity in this system is 9 nε/Hz1/2.

Fig. 7
Fig. 7

Detected AE signal generated by the pencil lead break, measured at a distance of 1 m. (a) Detected wave without a filter presents the sensitivity to both high and low frequencies. (b) Detected wave after the high-pass filter, showing the S0 and A0 modes of the Lamb wave clearly.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

V S =Δ λ S G R D Pg
V S =2Δ λ S G R D Pg
V N =( V IN + V FRE + V COM + V PD )g
V N =( V FRE + V PD )g
Δ λ S =aε
V N = V S
ε min = V N 2aG R D Pg = V FRE + V PD 2aG R D P
S ε ( f )= S V N ( f ) 2aG R D Pg [ε/ Hz 1/2 ]

Metrics