Abstract

Duobinary formats are today considered as being one of the most promising cost-effective solutions for the deployment of 40 Gb/s technology with direct detection on existing 10 Gb/s WDM long-haul (metropolitan and core) transmission infrastructures. Various methods for generating duobinary formats have been developed in the past few years but to our knowledge their respective performances for 40 Gb/s transmission have never been really compared experimentally. Here, we propose to evaluate at 40 Gb/s their respective robustness with respect to the most stringent transmission impairments, namely ASE noise, chromatic dispersion, polarization mode dispersion and nonlinear effects. We demonstrate that, owing to its enhanced resistance to intra-channel nonlinearities as compared to non-return-to-zero, duobinary can permit to reach transmission distances compliant with metropolitan and core applications on G.652 standard single mode fibre when quasi single-channel transmission conditions are met. We show furthermore that shifting optical duobinary filtering from the transmitter output to the receiver input can be of high interest to improve further the system maximum reach. We show also that phase-shaped binary transmission (PSBT) formats are fully compliant with 50-GHz channel spacing and that they are, in terms of transmission performance, as good as partial differential phase shift keying (Partial-DPSK), which is considered by equipment suppliers as the preferential transport solution for deployment of 40 Gb/s technology with direct detection on existing 10 Gb/s WDM metropolitan and core transmission infrastructures.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Yonenaga, S. Kuwano, S. Norimatsu, and S. Shibata, “Optical duobinary transmission system with no receiver sensitivity degradation,” Electron. Lett.31(4), 302–304 (1995).
    [CrossRef]
  2. D. Penninckx, M. Chbat, L. Pierre, and J. P. Thiery, “The phase-shaped binary transmission (PSBT): a new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett.9(2), 259–261 (1997).
    [CrossRef]
  3. X. Wei, X. Liu, S. Chandrasekhar, A. H. Gnauck, G. Raybon, J. Leuthold, and P. J. Winzer, “40 Gb/s duobinary and modified duobinary transmitter based on an optical delay interferometer,” in Proceedings ECOC 2002, Copenhaguen, 4, 1–2 (2002).
  4. A. H. Gnauck, X. Liu, S. Chandrasekhar, and X. Wei, “Optical duobinary format from demodulation of DPSK using athermal delay interferometer,” IEEE Photon. Technol. Lett.18(4), 637–639 (2006).
    [CrossRef]
  5. D. Penninckx, H. Bissessur, P. Brindel, E. Gohin, and F. Bakhti, “Optical differential phase shift keying direct detection considered as a duobinary signal,” in Proceedings ECOC 2001, 3, 456–457 (2001).
  6. P. Brindel, L. Pierre, G. Ducournau, O. Latry, M. Kétata, and O. Leclerc, “Optical generation of 43 Gbit/s phase-shaped binary transmission format from DPSK signal using 50 GHz periodic optical filter,” in Proceedings ECOC 2005, 4, 847–848 (2005).
  7. H. Kim and C. X. Yu, “Optical duobinary transmission system featuring improved receiver sensitivity and reduced optical bandwidth,” IEEE Photon. Technol. Lett.14(8), 1205–1207 (2002).
    [CrossRef]
  8. I. Lyubomirsky and B. Pitchumani, “Impact of optical filtering on duobinary transmission,” IEEE Photon. Technol. Lett.16(8), 1969–1971 (2004).
    [CrossRef]
  9. A. D’Errico, R. Proietti, L. Giorgi, G. Contestabile, and E. Ciaramella, “WDM-DPSK detection by means of frequency-periodic Gaussian filtering,” Electron. Lett.42(2), 112–113 (2006).
    [CrossRef]
  10. A. Royset and D. R. Hjelme, “Novel dispersion tolerant optical duobinary transmitter using phase modulator and Bragg grating filter,” in Proceedings ECOC 1998, Amsterdam, 225–226 (1998).
  11. G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).
  12. C. Gosset, L. Dupont, A. Tan, A. Bezard, and E. Pincemin, “Experimental performance comparison of duobinary formats for 40 Gb/s Long-Haul Transmission,” OFC' 2008, Paper JThA55 (2008).
  13. A. Tan and E. Pincemin, “Performance comparison of duobinary formats for 40 Gb/s and mixed 10/40 Gb/s long-haul WDM transmission on SSMF and LEAF fibers,” J. Lightwave Technol.27(4), 396–408 (2009).
    [CrossRef]
  14. G. Bosco, A. Carena, V. Curri, R. Gaudino, and P. Poggiolini, “Quantum limit of direct receivers using duobinary transmission,” IEEE Photon. Technol. Lett.15(1), 102–104 (2003).
    [CrossRef]
  15. B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, “Partial DPSK with excellent filter tolerance and OSNR sensitivity,” IEEE Photon. Technol. Lett.42, 1363–1364 (2006).
  16. A. Lender, “The duobinary technique for high-speed data transmission,” IEEE Trans.Commun. Electron.82, 214–218 (1963).
  17. A. Sekey, “An analysis of the duobinary technique,” IEEE Trans. Commun. Technol.14(2), 126–130 (1966).
    [CrossRef]

2009

2006

A. H. Gnauck, X. Liu, S. Chandrasekhar, and X. Wei, “Optical duobinary format from demodulation of DPSK using athermal delay interferometer,” IEEE Photon. Technol. Lett.18(4), 637–639 (2006).
[CrossRef]

A. D’Errico, R. Proietti, L. Giorgi, G. Contestabile, and E. Ciaramella, “WDM-DPSK detection by means of frequency-periodic Gaussian filtering,” Electron. Lett.42(2), 112–113 (2006).
[CrossRef]

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, “Partial DPSK with excellent filter tolerance and OSNR sensitivity,” IEEE Photon. Technol. Lett.42, 1363–1364 (2006).

2004

I. Lyubomirsky and B. Pitchumani, “Impact of optical filtering on duobinary transmission,” IEEE Photon. Technol. Lett.16(8), 1969–1971 (2004).
[CrossRef]

2003

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

G. Bosco, A. Carena, V. Curri, R. Gaudino, and P. Poggiolini, “Quantum limit of direct receivers using duobinary transmission,” IEEE Photon. Technol. Lett.15(1), 102–104 (2003).
[CrossRef]

2002

H. Kim and C. X. Yu, “Optical duobinary transmission system featuring improved receiver sensitivity and reduced optical bandwidth,” IEEE Photon. Technol. Lett.14(8), 1205–1207 (2002).
[CrossRef]

1997

D. Penninckx, M. Chbat, L. Pierre, and J. P. Thiery, “The phase-shaped binary transmission (PSBT): a new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett.9(2), 259–261 (1997).
[CrossRef]

1995

K. Yonenaga, S. Kuwano, S. Norimatsu, and S. Shibata, “Optical duobinary transmission system with no receiver sensitivity degradation,” Electron. Lett.31(4), 302–304 (1995).
[CrossRef]

1966

A. Sekey, “An analysis of the duobinary technique,” IEEE Trans. Commun. Technol.14(2), 126–130 (1966).
[CrossRef]

1963

A. Lender, “The duobinary technique for high-speed data transmission,” IEEE Trans.Commun. Electron.82, 214–218 (1963).

Antona, J. C.

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

Bigo, S.

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

Bosco, G.

G. Bosco, A. Carena, V. Curri, R. Gaudino, and P. Poggiolini, “Quantum limit of direct receivers using duobinary transmission,” IEEE Photon. Technol. Lett.15(1), 102–104 (2003).
[CrossRef]

Brindel, P.

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

Carena, A.

G. Bosco, A. Carena, V. Curri, R. Gaudino, and P. Poggiolini, “Quantum limit of direct receivers using duobinary transmission,” IEEE Photon. Technol. Lett.15(1), 102–104 (2003).
[CrossRef]

Chandrasekhar, S.

A. H. Gnauck, X. Liu, S. Chandrasekhar, and X. Wei, “Optical duobinary format from demodulation of DPSK using athermal delay interferometer,” IEEE Photon. Technol. Lett.18(4), 637–639 (2006).
[CrossRef]

Charlet, G.

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

Chbat, M.

D. Penninckx, M. Chbat, L. Pierre, and J. P. Thiery, “The phase-shaped binary transmission (PSBT): a new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett.9(2), 259–261 (1997).
[CrossRef]

Ciaramella, E.

A. D’Errico, R. Proietti, L. Giorgi, G. Contestabile, and E. Ciaramella, “WDM-DPSK detection by means of frequency-periodic Gaussian filtering,” Electron. Lett.42(2), 112–113 (2006).
[CrossRef]

Contestabile, G.

A. D’Errico, R. Proietti, L. Giorgi, G. Contestabile, and E. Ciaramella, “WDM-DPSK detection by means of frequency-periodic Gaussian filtering,” Electron. Lett.42(2), 112–113 (2006).
[CrossRef]

Curri, V.

G. Bosco, A. Carena, V. Curri, R. Gaudino, and P. Poggiolini, “Quantum limit of direct receivers using duobinary transmission,” IEEE Photon. Technol. Lett.15(1), 102–104 (2003).
[CrossRef]

D’Errico, A.

A. D’Errico, R. Proietti, L. Giorgi, G. Contestabile, and E. Ciaramella, “WDM-DPSK detection by means of frequency-periodic Gaussian filtering,” Electron. Lett.42(2), 112–113 (2006).
[CrossRef]

Gaudino, R.

G. Bosco, A. Carena, V. Curri, R. Gaudino, and P. Poggiolini, “Quantum limit of direct receivers using duobinary transmission,” IEEE Photon. Technol. Lett.15(1), 102–104 (2003).
[CrossRef]

Giorgi, L.

A. D’Errico, R. Proietti, L. Giorgi, G. Contestabile, and E. Ciaramella, “WDM-DPSK detection by means of frequency-periodic Gaussian filtering,” Electron. Lett.42(2), 112–113 (2006).
[CrossRef]

Gnauck, A. H.

A. H. Gnauck, X. Liu, S. Chandrasekhar, and X. Wei, “Optical duobinary format from demodulation of DPSK using athermal delay interferometer,” IEEE Photon. Technol. Lett.18(4), 637–639 (2006).
[CrossRef]

Godin, J.

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

Gorlier, M.

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

Idler, W.

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

Kim, H.

H. Kim and C. X. Yu, “Optical duobinary transmission system featuring improved receiver sensitivity and reduced optical bandwidth,” IEEE Photon. Technol. Lett.14(8), 1205–1207 (2002).
[CrossRef]

Kuwano, S.

K. Yonenaga, S. Kuwano, S. Norimatsu, and S. Shibata, “Optical duobinary transmission system with no receiver sensitivity degradation,” Electron. Lett.31(4), 302–304 (1995).
[CrossRef]

Lanne, S.

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

Lender, A.

A. Lender, “The duobinary technique for high-speed data transmission,” IEEE Trans.Commun. Electron.82, 214–218 (1963).

Liu, F.

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, “Partial DPSK with excellent filter tolerance and OSNR sensitivity,” IEEE Photon. Technol. Lett.42, 1363–1364 (2006).

Liu, X.

A. H. Gnauck, X. Liu, S. Chandrasekhar, and X. Wei, “Optical duobinary format from demodulation of DPSK using athermal delay interferometer,” IEEE Photon. Technol. Lett.18(4), 637–639 (2006).
[CrossRef]

Lyubomirsky, I.

I. Lyubomirsky and B. Pitchumani, “Impact of optical filtering on duobinary transmission,” IEEE Photon. Technol. Lett.16(8), 1969–1971 (2004).
[CrossRef]

Mamyshev, P.

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, “Partial DPSK with excellent filter tolerance and OSNR sensitivity,” IEEE Photon. Technol. Lett.42, 1363–1364 (2006).

Mardoyan, H.

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

Mikkelsen, B.

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, “Partial DPSK with excellent filter tolerance and OSNR sensitivity,” IEEE Photon. Technol. Lett.42, 1363–1364 (2006).

Molina, M.

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

Norimatsu, S.

K. Yonenaga, S. Kuwano, S. Norimatsu, and S. Shibata, “Optical duobinary transmission system with no receiver sensitivity degradation,” Electron. Lett.31(4), 302–304 (1995).
[CrossRef]

Penninckx, D.

D. Penninckx, M. Chbat, L. Pierre, and J. P. Thiery, “The phase-shaped binary transmission (PSBT): a new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett.9(2), 259–261 (1997).
[CrossRef]

Pierre, L.

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

D. Penninckx, M. Chbat, L. Pierre, and J. P. Thiery, “The phase-shaped binary transmission (PSBT): a new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett.9(2), 259–261 (1997).
[CrossRef]

Pincemin, E.

Pitchumani, B.

I. Lyubomirsky and B. Pitchumani, “Impact of optical filtering on duobinary transmission,” IEEE Photon. Technol. Lett.16(8), 1969–1971 (2004).
[CrossRef]

Poggiolini, P.

G. Bosco, A. Carena, V. Curri, R. Gaudino, and P. Poggiolini, “Quantum limit of direct receivers using duobinary transmission,” IEEE Photon. Technol. Lett.15(1), 102–104 (2003).
[CrossRef]

Proietti, R.

A. D’Errico, R. Proietti, L. Giorgi, G. Contestabile, and E. Ciaramella, “WDM-DPSK detection by means of frequency-periodic Gaussian filtering,” Electron. Lett.42(2), 112–113 (2006).
[CrossRef]

Rasmussen, C.

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, “Partial DPSK with excellent filter tolerance and OSNR sensitivity,” IEEE Photon. Technol. Lett.42, 1363–1364 (2006).

Sekey, A.

A. Sekey, “An analysis of the duobinary technique,” IEEE Trans. Commun. Technol.14(2), 126–130 (1966).
[CrossRef]

Shibata, S.

K. Yonenaga, S. Kuwano, S. Norimatsu, and S. Shibata, “Optical duobinary transmission system with no receiver sensitivity degradation,” Electron. Lett.31(4), 302–304 (1995).
[CrossRef]

Sillard, P.

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

Simonneau, C.

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

Tan, A.

Thiery, J. P.

D. Penninckx, M. Chbat, L. Pierre, and J. P. Thiery, “The phase-shaped binary transmission (PSBT): a new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett.9(2), 259–261 (1997).
[CrossRef]

Tran, P.

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

Wei, X.

A. H. Gnauck, X. Liu, S. Chandrasekhar, and X. Wei, “Optical duobinary format from demodulation of DPSK using athermal delay interferometer,” IEEE Photon. Technol. Lett.18(4), 637–639 (2006).
[CrossRef]

Yonenaga, K.

K. Yonenaga, S. Kuwano, S. Norimatsu, and S. Shibata, “Optical duobinary transmission system with no receiver sensitivity degradation,” Electron. Lett.31(4), 302–304 (1995).
[CrossRef]

Yu, C. X.

H. Kim and C. X. Yu, “Optical duobinary transmission system featuring improved receiver sensitivity and reduced optical bandwidth,” IEEE Photon. Technol. Lett.14(8), 1205–1207 (2002).
[CrossRef]

Electron. Lett.

K. Yonenaga, S. Kuwano, S. Norimatsu, and S. Shibata, “Optical duobinary transmission system with no receiver sensitivity degradation,” Electron. Lett.31(4), 302–304 (1995).
[CrossRef]

A. D’Errico, R. Proietti, L. Giorgi, G. Contestabile, and E. Ciaramella, “WDM-DPSK detection by means of frequency-periodic Gaussian filtering,” Electron. Lett.42(2), 112–113 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Kim and C. X. Yu, “Optical duobinary transmission system featuring improved receiver sensitivity and reduced optical bandwidth,” IEEE Photon. Technol. Lett.14(8), 1205–1207 (2002).
[CrossRef]

I. Lyubomirsky and B. Pitchumani, “Impact of optical filtering on duobinary transmission,” IEEE Photon. Technol. Lett.16(8), 1969–1971 (2004).
[CrossRef]

D. Penninckx, M. Chbat, L. Pierre, and J. P. Thiery, “The phase-shaped binary transmission (PSBT): a new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett.9(2), 259–261 (1997).
[CrossRef]

A. H. Gnauck, X. Liu, S. Chandrasekhar, and X. Wei, “Optical duobinary format from demodulation of DPSK using athermal delay interferometer,” IEEE Photon. Technol. Lett.18(4), 637–639 (2006).
[CrossRef]

G. Bosco, A. Carena, V. Curri, R. Gaudino, and P. Poggiolini, “Quantum limit of direct receivers using duobinary transmission,” IEEE Photon. Technol. Lett.15(1), 102–104 (2003).
[CrossRef]

B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, “Partial DPSK with excellent filter tolerance and OSNR sensitivity,” IEEE Photon. Technol. Lett.42, 1363–1364 (2006).

IEEE Trans. Commun. Technol.

A. Sekey, “An analysis of the duobinary technique,” IEEE Trans. Commun. Technol.14(2), 126–130 (1966).
[CrossRef]

IEEE Trans.Commun. Electron.

A. Lender, “The duobinary technique for high-speed data transmission,” IEEE Trans.Commun. Electron.82, 214–218 (1963).

J. Lightwave Technol.

OFC

G. Charlet, S. Lanne, L. Pierre, C. Simonneau, P. Tran, H. Mardoyan, P. Brindel, M. Gorlier, J. C. Antona, M. Molina, P. Sillard, J. Godin, W. Idler, and S. Bigo, “Cost-optimized 6.3Tbit/s-capacity terrestrial link over 17x100kmusing Phase-Shaped Binary Transmission in a conventional all-EDFA SMF-based system,” OFC2003, PD25 (2003).

Other

C. Gosset, L. Dupont, A. Tan, A. Bezard, and E. Pincemin, “Experimental performance comparison of duobinary formats for 40 Gb/s Long-Haul Transmission,” OFC' 2008, Paper JThA55 (2008).

D. Penninckx, H. Bissessur, P. Brindel, E. Gohin, and F. Bakhti, “Optical differential phase shift keying direct detection considered as a duobinary signal,” in Proceedings ECOC 2001, 3, 456–457 (2001).

P. Brindel, L. Pierre, G. Ducournau, O. Latry, M. Kétata, and O. Leclerc, “Optical generation of 43 Gbit/s phase-shaped binary transmission format from DPSK signal using 50 GHz periodic optical filter,” in Proceedings ECOC 2005, 4, 847–848 (2005).

X. Wei, X. Liu, S. Chandrasekhar, A. H. Gnauck, G. Raybon, J. Leuthold, and P. J. Winzer, “40 Gb/s duobinary and modified duobinary transmitter based on an optical delay interferometer,” in Proceedings ECOC 2002, Copenhaguen, 4, 1–2 (2002).

A. Royset and D. R. Hjelme, “Novel dispersion tolerant optical duobinary transmitter using phase modulator and Bragg grating filter,” in Proceedings ECOC 1998, Amsterdam, 225–226 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Normalized spectral densities Wa and Wb of the binary and duobinary sequences an and bn when the pulse shape is NRZ-rectangular. and the bit period T = 25 ps (i.e. 1/T = 40 GHz).

Fig. 2
Fig. 2

Intensity and phase characteristics of NRZ, standard duobinary and PSBT pulses in the “1110010100111” sequence.

Fig. 3
Fig. 3

40 Gb/s duobinary transmitter configurations under study with corresponding eye diagrams and spectra. NRZ is used here as reference. Extinction ratios are indicated as insets into the scope printouts. Acronyms are defined hereafter: LD (Laser Diode), MZM (Mach-Zehnder Modulator), PPG (Pulse Pattern Generator), DLI (Delay-Line Interferometer), LPF (Low-Pass Filter), BPF (Band-Pass Filter).

Fig. 4
Fig. 4

Back-to-back experimental set-up in the particular case of the 40 Gb/s PSBT transmitter. Acronyms are defined hereafter: LD (Laser Diode), MUX (Multiplexer), PPG (Pulse Pattern Generator), MZM (Mach-Zehnder Modulator), CD (Chromatic Dispersion), PBS (Polarization Beam Splitter), PBC (Polarization Beam Combiner), VODL (Variable Optical Delay Line), PMDE (Polarization Mode Dispersion Emulator), VOA (Variable Optical Attenuator), ASE (Amplified Spontaneous Emission), PD (Photodiode), BERT (Bit Error Rate Tester).

Fig. 5
Fig. 5

BER versus received OSNR (measured in 0.5 nm) of the NRZ, “Optical” duobinary, “Electrical” PSBT and “Optical” PSBT modulation formats. OSNR sensitivity of “Electrical” PSBT is measured for a cumulated chromatic dispersion of 0 ps/nm and + 150 ps/nm.

Fig. 6
Fig. 6

Required OSNR (in 0.5 nm) to have a BER = 10−9 as a function of the cumulated chromatic dispersion for the NRZ, “Optical” duobinary, “Electrical” PSBT and “Optical” PSBT modulation formats.

Fig. 7
Fig. 7

Influence of + 170-ps/nm residual CD on NRZ and “Electrical” PSBT formats when the sequences are respectively “…0010100…” and “…00100100…”. The non-distorted sequences are represented in blue while the sequences distorted by + 170 ps/nm of residual CD are represented in red.

Fig. 8
Fig. 8

OSNR penalties for a BER = 10−9 as a function of the first order PMD (or DGD) for the NRZ, “Optical” duobinary, “Electrical” PSBT and “Optical” PSBT modulation formats.

Fig. 9
Fig. 9

Set-up for the transmission experiment. Only the acronyms that have not been defined before are given hereafter: AOM (Acousto-Optic Modulator), EDFA (Erbium-Doped Fibre Amplifier), SSMF (Standard Single-Mode Fibre), DCF (Dispersion Compensation Fibre), DGE (Dynamic Gain Equalizer), TDCM (Tuneable Dispersion Compensation Module).

Fig. 10
Fig. 10

BER versus span input power per channel for the channel at 1550.12 nm after 1200 km of transmission.

Fig. 11
Fig. 11

BER versus span input power per channel for the channel at 1550.12 nm after 1200 km transmission in the recirculating loop for the “Optical” duobinary and “Optical” PSBT formats, when the DLI or 22.4-GHz Gaussian band-pass filter is respectively located at the transmitter output or receiver input.

Fig. 12
Fig. 12

BER versus transmission distance for the channel at 1550.12 nm and for the various modulation formats under study.

Fig. 13
Fig. 13

BER versus received OSNR (measured in 0.5 nm) for the “Electrical” PSBT, “Optical” PSBT and Partial-DPSK modulation formats when the channel spacing is 100 GHz or 50 GHz.

Fig. 14
Fig. 14

OSNR (in 0.5 nm) to have a BER = 10−9 as a function of the cumulated chromatic dispersion for the “Electrical” PSBT, “Optical” PSBT and Partial-DPSK modulation formats.

Fig. 15
Fig. 15

OSNR penalties for a BER = 10−9 as a function of the first order PMD (or DGD) for the “Electrical” PSBT, “Optical” PSBT and Partial-DPSK modulation formats.

Fig. 16
Fig. 16

Set-up for the transmission experiment with 50-GHz channel spacing. . Only the acronyms that have not been defined before are given hereafter: WSS (Wavelength Selective Switch), PM (Polarization-Maintaining).

Fig. 17
Fig. 17

BER versus span input power per channel of the wavelength at 1550.12 nm for the various configurations indicated in the legend after 1200 km of transmission in the recirculating loop, for the “Electrical” and “Optical” PSBT (the Gaussian band-pass filter is located here at the receiver entrance) as well as for the Partial-DPSK format.

Fig. 18
Fig. 18

BER versus transmission distance for the channel at 1550.12 nm and for the various modulation formats and configurations under study.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W a = 1 4T | G( f ) | 2 W b = 1 8T | G( f ) | 2 [ 1+cos( 2πfT ) ]
G( f )=T sin( πfT ) πfT
W a = T 4 [ sin( πfT ) πfT ] 2 W b = T 4 [ sin( 2πfT ) 2πfT ] 2

Metrics