Abstract

We developed an all-fiber component with a signal feedthrough capable of combining up to 6 fiber-coupled multi-mode pump sources to a maximum pump power of 400 W at efficiencies in the range of 89 to 95%, providing the possibility of transmitting a high power signal in forward and in reverse direction. Hence, the fiber combiner can be implemented in almost any fiber laser or amplifier architecture. The complete optical design of the combiner was developed based on ray tracing simulations and confirmed by experimental results.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE6453, 64531F, 64531F-7 (2007).
    [CrossRef]
  2. C. Zeringue, C. Vergien, and I. Dajani, “Pump-limited, 203 W, single-frequency monolithic fiber amplifier based on laser gain competition,” Opt. Lett.36(5), 618–620 (2011).
    [CrossRef] [PubMed]
  3. D. J. DiGiovanni and A. J. Stentz, “Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices,” U.S. Patent 5864644 (1999).
  4. C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps (Invited Paper),” Proc. SPIE5709, 263–272 (2005).
    [CrossRef]
  5. A. Wetter, M. Faucher, M. Lovelady, and F. Séguin, “Tapered fused-bundle splitter capable of 1kW CW operation,” Proc. SPIE6453, 64530I, 64530I-10 (2007).
    [CrossRef]
  6. D. J. Ripin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett.31(25), 2204–2205 (1995).
    [CrossRef]
  7. J. P. Koplow, S. W. Moore, and D. A. V. Kliner, “A new method for side pumping of double-clad fiber sources,” IEEE J. Quantum Electron.39(4), 529–540 (2003).
    [CrossRef]
  8. F. Hakimi and H. Hakimi, “A new side coupling method for double-clad fiber amplifiers,” Conf. Lasers and Electro-Optics, 116 (2001).
  9. A. B. Grudinin, D. N. Payne, P. W. Turner, L. J. A. Nilsson, M. N. Zervas, M. Ibsen, and M. K. Durkin, “Multi-fiber arrangements for high-power fiber lasers and amplifiers,” U.S. Patent 6826335, (2004).
  10. F. Gonthier, “Novel designs for pump and signal fiber combiners,” Proc. SPIE7580, 758019, 758019-6 (2010).
    [CrossRef]
  11. C. Jauregui, S. Böhme, G. Wenetiadis, J. Limpert, and A. Tünnermann, “Side-pump combiner for all-fiber monolithic fiber lasers and amplifiers,” J. Opt. Soc. Am. B27(5), 1011–1015 (2010).
    [CrossRef]
  12. V. P. Gapontsev and I. Samartsev, Coupling arrangement between a multi-mode light source and an optical fiber through an intermediate optical fiber length,” U.S. Patent 5999673 (1999).
  13. Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, Y. Shamir, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE6552, 65520R, 65520R-9 (2007).
    [CrossRef]
  14. F. Gonthier, M. Garneau, and N. Vachon, “Multimode fiber outer cladding coupler for multi-clad fibers,” US Patent 7933779 B2 (2011).
  15. T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300 W output power,” IEEE Photon. Technol. Lett.24(20), 1864–1867 (2012).
    [CrossRef]
  16. C. T. Chang and D. C. Auth, “Radiation characteristics of a tapered cylindrical optical fiber,” J. Opt. Soc. Am.68(9), 1191–1196 (1978).
    [CrossRef]
  17. W. T. Welford, Aberrations of Optical Systems (IOP Publishing Ltd, 1986), Chap. 2, 4 and 5.
  18. Y. F. Li and J. W. Y. Lit, “Transmission properties of a multimode optical-fiber taper,” J. Opt. Soc. Am. A2(3), 462–468 (1985).
    [CrossRef]
  19. M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol.14(10), 2209–2214 (1996).
    [CrossRef]
  20. M.-J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of Effective Area for Single-Mode Operation in Step-Index Large Mode Area Laser Fibers,” J. Lightwave Technol.27(15), 3010–3016 (2009).
    [CrossRef]
  21. P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum.78(7), 073103 (2007).
    [CrossRef] [PubMed]

2012 (1)

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300 W output power,” IEEE Photon. Technol. Lett.24(20), 1864–1867 (2012).
[CrossRef]

2011 (1)

2010 (2)

2009 (1)

2007 (4)

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum.78(7), 073103 (2007).
[CrossRef] [PubMed]

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, Y. Shamir, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE6552, 65520R, 65520R-9 (2007).
[CrossRef]

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE6453, 64531F, 64531F-7 (2007).
[CrossRef]

A. Wetter, M. Faucher, M. Lovelady, and F. Séguin, “Tapered fused-bundle splitter capable of 1kW CW operation,” Proc. SPIE6453, 64530I, 64530I-10 (2007).
[CrossRef]

2005 (1)

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps (Invited Paper),” Proc. SPIE5709, 263–272 (2005).
[CrossRef]

2003 (1)

J. P. Koplow, S. W. Moore, and D. A. V. Kliner, “A new method for side pumping of double-clad fiber sources,” IEEE J. Quantum Electron.39(4), 529–540 (2003).
[CrossRef]

1996 (1)

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol.14(10), 2209–2214 (1996).
[CrossRef]

1995 (1)

D. J. Ripin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett.31(25), 2204–2205 (1995).
[CrossRef]

1985 (1)

1978 (1)

Alam, M.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE6453, 64531F, 64531F-7 (2007).
[CrossRef]

Andrejco, M. J.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps (Invited Paper),” Proc. SPIE5709, 263–272 (2005).
[CrossRef]

Auth, D. C.

Böhme, S.

Brar, K.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps (Invited Paper),” Proc. SPIE5709, 263–272 (2005).
[CrossRef]

Chang, C. T.

Chen, X.

Dajani, I.

Danzmann, K.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum.78(7), 073103 (2007).
[CrossRef] [PubMed]

DiGiovanni, D. J.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps (Invited Paper),” Proc. SPIE5709, 263–272 (2005).
[CrossRef]

Faucher, M.

A. Wetter, M. Faucher, M. Lovelady, and F. Séguin, “Tapered fused-bundle splitter capable of 1kW CW operation,” Proc. SPIE6453, 64530I, 64530I-10 (2007).
[CrossRef]

Fishteyn, M.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps (Invited Paper),” Proc. SPIE5709, 263–272 (2005).
[CrossRef]

Glick, Y.

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, Y. Shamir, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE6552, 65520R, 65520R-9 (2007).
[CrossRef]

Goldberg, L.

D. J. Ripin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett.31(25), 2204–2205 (1995).
[CrossRef]

Gonthier, F.

F. Gonthier, “Novel designs for pump and signal fiber combiners,” Proc. SPIE7580, 758019, 758019-6 (2010).
[CrossRef]

Gray, S.

Haibara, T.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol.14(10), 2209–2214 (1996).
[CrossRef]

Headley, C.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps (Invited Paper),” Proc. SPIE5709, 263–272 (2005).
[CrossRef]

Jauregui, C.

Katz, O.

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, Y. Shamir, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE6552, 65520R, 65520R-9 (2007).
[CrossRef]

Kihara, M.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol.14(10), 2209–2214 (1996).
[CrossRef]

Kliner, D. A. V.

J. P. Koplow, S. W. Moore, and D. A. V. Kliner, “A new method for side pumping of double-clad fiber sources,” IEEE J. Quantum Electron.39(4), 529–540 (2003).
[CrossRef]

Koplow, J. P.

J. P. Koplow, S. W. Moore, and D. A. V. Kliner, “A new method for side pumping of double-clad fiber sources,” IEEE J. Quantum Electron.39(4), 529–540 (2003).
[CrossRef]

Koplowitch, T.

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, Y. Shamir, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE6552, 65520R, 65520R-9 (2007).
[CrossRef]

Kracht, D.

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300 W output power,” IEEE Photon. Technol. Lett.24(20), 1864–1867 (2012).
[CrossRef]

Kwee, P.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum.78(7), 073103 (2007).
[CrossRef] [PubMed]

Lavi, R.

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, Y. Shamir, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE6552, 65520R, 65520R-9 (2007).
[CrossRef]

Li, M.-J.

Li, Y. F.

Limpert, J.

Lit, J. W. Y.

Liu, A.

Lovelady, M.

A. Wetter, M. Faucher, M. Lovelady, and F. Séguin, “Tapered fused-bundle splitter capable of 1kW CW operation,” Proc. SPIE6453, 64530I, 64530I-10 (2007).
[CrossRef]

Machewirth, D. P.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE6453, 64531F, 64531F-7 (2007).
[CrossRef]

Mann, J.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps (Invited Paper),” Proc. SPIE5709, 263–272 (2005).
[CrossRef]

Matsumoto, M.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol.14(10), 2209–2214 (1996).
[CrossRef]

Mermelstein, M. D.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps (Invited Paper),” Proc. SPIE5709, 263–272 (2005).
[CrossRef]

Moore, S. W.

J. P. Koplow, S. W. Moore, and D. A. V. Kliner, “A new method for side pumping of double-clad fiber sources,” IEEE J. Quantum Electron.39(4), 529–540 (2003).
[CrossRef]

Nafcha, Y.

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, Y. Shamir, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE6552, 65520R, 65520R-9 (2007).
[CrossRef]

Neumann, J.

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300 W output power,” IEEE Photon. Technol. Lett.24(20), 1864–1867 (2012).
[CrossRef]

O'Connor, M.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE6453, 64531F, 64531F-7 (2007).
[CrossRef]

Ripin, D. J.

D. J. Ripin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett.31(25), 2204–2205 (1995).
[CrossRef]

Samson, B.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE6453, 64531F, 64531F-7 (2007).
[CrossRef]

Sayinc, H.

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300 W output power,” IEEE Photon. Technol. Lett.24(20), 1864–1867 (2012).
[CrossRef]

Séguin, F.

A. Wetter, M. Faucher, M. Lovelady, and F. Séguin, “Tapered fused-bundle splitter capable of 1kW CW operation,” Proc. SPIE6453, 64530I, 64530I-10 (2007).
[CrossRef]

Seifert, F.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum.78(7), 073103 (2007).
[CrossRef] [PubMed]

Shamir, Y.

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, Y. Shamir, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE6552, 65520R, 65520R-9 (2007).
[CrossRef]

Sintov, Y.

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, Y. Shamir, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE6552, 65520R, 65520R-9 (2007).
[CrossRef]

Tankala, K.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE6453, 64531F, 64531F-7 (2007).
[CrossRef]

Theeg, T.

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300 W output power,” IEEE Photon. Technol. Lett.24(20), 1864–1867 (2012).
[CrossRef]

Tomita, S.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol.14(10), 2209–2214 (1996).
[CrossRef]

Tünnermann, A.

Vergien, C.

Walton, D. T.

Wang, J.

Wang, Q.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE6453, 64531F, 64531F-7 (2007).
[CrossRef]

Wenetiadis, G.

Wetter, A.

A. Wetter, M. Faucher, M. Lovelady, and F. Séguin, “Tapered fused-bundle splitter capable of 1kW CW operation,” Proc. SPIE6453, 64530I, 64530I-10 (2007).
[CrossRef]

Willke, B.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum.78(7), 073103 (2007).
[CrossRef] [PubMed]

Yablon, A. D.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps (Invited Paper),” Proc. SPIE5709, 263–272 (2005).
[CrossRef]

Zenteno, L. A.

Zeringue, C.

Electron. Lett. (1)

D. J. Ripin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett.31(25), 2204–2205 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. P. Koplow, S. W. Moore, and D. A. V. Kliner, “A new method for side pumping of double-clad fiber sources,” IEEE J. Quantum Electron.39(4), 529–540 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300 W output power,” IEEE Photon. Technol. Lett.24(20), 1864–1867 (2012).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Proc. SPIE (5)

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps (Invited Paper),” Proc. SPIE5709, 263–272 (2005).
[CrossRef]

A. Wetter, M. Faucher, M. Lovelady, and F. Séguin, “Tapered fused-bundle splitter capable of 1kW CW operation,” Proc. SPIE6453, 64530I, 64530I-10 (2007).
[CrossRef]

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE6453, 64531F, 64531F-7 (2007).
[CrossRef]

F. Gonthier, “Novel designs for pump and signal fiber combiners,” Proc. SPIE7580, 758019, 758019-6 (2010).
[CrossRef]

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, Y. Shamir, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE6552, 65520R, 65520R-9 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum.78(7), 073103 (2007).
[CrossRef] [PubMed]

Other (6)

F. Gonthier, M. Garneau, and N. Vachon, “Multimode fiber outer cladding coupler for multi-clad fibers,” US Patent 7933779 B2 (2011).

W. T. Welford, Aberrations of Optical Systems (IOP Publishing Ltd, 1986), Chap. 2, 4 and 5.

V. P. Gapontsev and I. Samartsev, Coupling arrangement between a multi-mode light source and an optical fiber through an intermediate optical fiber length,” U.S. Patent 5999673 (1999).

D. J. DiGiovanni and A. J. Stentz, “Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices,” U.S. Patent 5864644 (1999).

F. Hakimi and H. Hakimi, “A new side coupling method for double-clad fiber amplifiers,” Conf. Lasers and Electro-Optics, 116 (2001).

A. B. Grudinin, D. N. Payne, P. W. Turner, L. J. A. Nilsson, M. N. Zervas, M. Ibsen, and M. K. Durkin, “Multi-fiber arrangements for high-power fiber lasers and amplifiers,” U.S. Patent 6826335, (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic side view of a side-pumped double-clad fiber including important ray paths.

Fig. 2
Fig. 2

(a) Pump coupling efficiency (CE) with respect to the taper ratio (TR) and the converging taper length (TL) and (b) a comparison of the pump coupling efficiencies without intermediate fiber (IF) and with IF for different fiber parameters, IF Ø: IF cladding diameter.

Fig. 3
Fig. 3

Pump coupling efficiency with respect to the taper ratio at a converging taper length of (a) 5 mm and (b) 20 mm for a PFF with a pump light input NA of 0.15, 0.22 and 0.30.

Fig. 4
Fig. 4

The loss mechanism and the total pump power loss of the fiber combiner for (a) a TL of 5 mm and (b) a TL of 20 mm at different taper ratios. The losses in percent were calculated with respect to the total input pump power. Please see Fig. 1 for TP, PCT and PAA.

Fig. 5
Fig. 5

The ratio of power leakage into the cladding of the target fiber (PCT) to the total input pump power against the taper ratio for a TL of 20 mm.

Fig. 6
Fig. 6

Coupled and transmitted power measured for a fiber combiner with one pump port with (a) a TL of 9.5 mm (TR of 2.6) and (b) a TL of 18 mm (TR 6.7), * ratio of coupled or transmitted power to total diode power in percent.

Fig. 7
Fig. 7

Fiber combiner with multiple pump ports, PFF: pump feeding fiber with a piece of coreless intermediate fiber (IF) as described in Fig. 1, TF: target fiber, TP: transmitted power.

Fig. 8
Fig. 8

Simulated coupling efficiency for a pump combiner with up to 6 pump ports for (a) a TL of 20 mm and (b) a TL of 10 mm for a pump light input NA of 0.22.

Fig. 9
Fig. 9

Simulated losses for a pump combiner with a TL of 20 mm and a TR of 6 providing up to 6 pump ports. Please see Fig. 1 for TP, PCT and PAA.

Fig. 10
Fig. 10

(a) Combined and transmitted power measured for a fiber combiner with 4 pump ports and (b) combined pump power measured for a fiber combiner with 6 pump ports, * ratio of coupled or transmitted power to total diode power in percent.

Fig. 11
Fig. 11

Microscope image of (a) the top view and (b) the cross section view of a fiber combiner with 4 pump ports.

Fig. 12
Fig. 12

(a) Pump coupling efficiency of the individual pump ports of the six pump port fiber combiner presented in Fig. 10(b) and 10(b) comparison of the experimentally achieved pump coupling efficiencies with the simulation results for fiber combiners with multiple pump ports.

Fig. 13
Fig. 13

Combined pump power for a 4 + 1x1 high power fiber combiner, * ratio of coupled power to total diode power in percent.

Fig. 14
Fig. 14

Setup for beam quality measurements, TF: target fiber, PBS: polarization beam splitter.

Fig. 15
Fig. 15

Normalized transmitted intensity through a premode cleaner as a function of the ring-cavity length in units of a free spectral range for (a) the reference beam and (b) the signal feedthrough beam of a 4 + 1x1 combiner.

Fig. 16
Fig. 16

Setup for the signal to pump isolation measurement of port 3 and 4, TF: target fiber, TP: transmitted pump power of the fiber combiner.

Fig. 17
Fig. 17

Signal to pump isolation (SPI) of the 4 pump ports in respect to the amplified signal power. The measurement data were connected by lines for clarity.

Tables (1)

Tables Icon

Table 1 Overview of the fiber parameters.

Metrics